論文の概要: Explaining Time Series Classifiers with PHAR: Rule Extraction and Fusion from Post-hoc Attributions
- arxiv url: http://arxiv.org/abs/2508.01687v2
- Date: Tue, 12 Aug 2025 11:03:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-13 12:16:51.374795
- Title: Explaining Time Series Classifiers with PHAR: Rule Extraction and Fusion from Post-hoc Attributions
- Title(参考訳): PHARを用いた時系列分類:ポストホック属性からの規則抽出と融合
- Authors: Maciej Mozolewski, Szymon Bobek, Grzegorz J. Nalepa,
- Abstract要約: PHARは、数値的特徴属性を構造化された可読性ルールに変換するフレームワークである。
専用ルール融合ステップは、重み付け選択やラッソベースの精錬のような戦略を用いてルールセットを統合する。
UCR/UEA時系列分類アーカイブの実験は、PHARがTS分類タスクの解釈可能性、決定透明性、実践的適用性を改善することを示した。
- 参考スコア(独自算出の注目度): 7.7491252992917445
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Explaining machine learning (ML) models for time series (TS) classification remains challenging due to the difficulty of interpreting raw time series and the high dimensionality of the input space. We introduce PHAR-Post-hoc Attribution Rules-a unified framework that transforms numeric feature attributions from post-hoc, instance-wise explainers (e.g., LIME, SHAP) into structured, human-readable rules. These rules define interpretable intervals that indicate where and when key decision boundaries occur, enhancing model transparency. PHAR performs comparably to native rule-based methods, such as Anchor, while scaling more efficiently to long TS sequences and achieving broader instance coverage. A dedicated rule fusion step consolidates rule sets using strategies like weighted selection and lasso-based refinement, balancing key quality metrics: coverage, confidence, and simplicity. This fusion ensures each instance receives a concise and unambiguous rule, improving both explanation fidelity and consistency. We further introduce visualization techniques to illustrate specificity-generalization trade-offs in the derived rules. PHAR resolves conflicting and overlapping explanations-a common effect of the Rashomon phenomenon-into coherent, domain-adaptable insights. Comprehensive experiments on UCR/UEA Time Series Classification Archive demonstrate that PHAR improves interpretability, decision transparency, and practical applicability for TS classification tasks.
- Abstract(参考訳): 時系列(TS)分類のための機械学習(ML)モデルの説明は、生の時系列の解釈が困難であり、入力空間の高次元性のため、依然として困難である。
PHAR-ポストホック属性ルール(PHAR-post-hoc Attribution Rules)は、ポストホック、インスタンスワイドな説明書(例えば、LIME、SHAP)から、構造化された人間可読なルールに変換する統一的なフレームワークである。
これらのルールは、重要な決定境界がどこでいつ発生するかを示す解釈可能なインターバルを定義し、モデルの透明性を高めます。
PHARは、Anchorのようなネイティブなルールベースのメソッドと互換性があり、長いTSシーケンスをより効率的にスケーリングし、より広範なインスタンスカバレッジを達成する。
専用のルール融合ステップは、重み付けされた選択やラッソベースの改善、カバレッジ、信頼性、単純さといった重要な品質指標のバランスといった戦略を使用して、ルールセットを集約する。
この融合により、各インスタンスは簡潔で曖昧な規則を受け取り、説明の忠実さと一貫性の両方を改善する。
さらに、導出ルールにおける特異性一般化トレードオフを説明するための可視化手法を導入する。
PHARは、矛盾と重複する説明を解決している。
UCR/UEA時系列分類アーカイブに関する総合的な実験は、PHARがTS分類タスクの解釈可能性、決定透明性、実用性を改善することを実証している。
関連論文リスト
- Feedback Guidance of Diffusion Models [0.0]
Interval-Free Guidance (CFG) は, 条件付き拡散モデルにおける試料の忠実度向上の標準となっている。
本稿では,FBG(FeedBack Guidance)を提案する。
論文 参考訳(メタデータ) (2025-06-06T13:46:32Z) - Explainability-Driven Quality Assessment for Rule-Based Systems [0.7303392100830282]
本稿では,知識に基づく推論システムにおけるルールの質を高めるための説明フレームワークを提案する。
規則推論の説明を生成し、人間の解釈を利用して規則を洗練させる。
その実用性は金融のユースケースを通じて実証される。
論文 参考訳(メタデータ) (2025-02-03T11:26:09Z) - RuleExplorer: A Scalable Matrix Visualization for Understanding Tree Ensemble Classifiers [20.416696003269674]
本稿では,数万のルールを含む木アンサンブル分類法を説明するために,拡張性のある視覚解析手法を提案する。
我々は,これらのルールを階層レベルで優先順位付けするための,異常バイアスモデル削減手法を開発した。
本手法は,共通ルールと異常ルールの両方を深く理解し,包括性を犠牲にすることなく解釈性を向上させる。
論文 参考訳(メタデータ) (2024-09-05T01:48:11Z) - Disperse-Then-Merge: Pushing the Limits of Instruction Tuning via Alignment Tax Reduction [75.25114727856861]
大規模言語モデル(LLM)は、スーパービジョンされた微調整プロセスの後半で劣化する傾向にある。
この問題に対処するための単純な分散結合フレームワークを導入する。
我々のフレームワークは、一連の標準知識と推論ベンチマークに基づいて、データキュレーションや正規化の訓練など、様々な高度な手法より優れています。
論文 参考訳(メタデータ) (2024-05-22T08:18:19Z) - Rule By Example: Harnessing Logical Rules for Explainable Hate Speech
Detection [13.772240348963303]
Rule By Example(RBE)は、テキストコンテンツモデレーションのタスクに対する論理規則から学習するための、新規なコントラスト学習手法である。
RBEはルール基底の予測を提供することができ、典型的なディープラーニングベースのアプローチと比較して説明可能でカスタマイズ可能な予測を可能にする。
論文 参考訳(メタデータ) (2023-07-24T16:55:37Z) - Self-regulating Prompts: Foundational Model Adaptation without
Forgetting [112.66832145320434]
本稿では,PromptSRCと呼ばれる自己正規化フレームワークを提案する。
PromptSRCはタスク固有の汎用表現とタスクに依存しない汎用表現の両方に最適化するプロンプトを導く。
論文 参考訳(メタデータ) (2023-07-13T17:59:35Z) - Disentanglement via Latent Quantization [60.37109712033694]
本研究では,組織化された潜在空間からの符号化と復号化に向けた帰納的バイアスを構築する。
本稿では,基本データレコーダ (vanilla autoencoder) と潜時再構成 (InfoGAN) 生成モデルの両方に追加することで,このアプローチの広範な適用性を実証する。
論文 参考訳(メタデータ) (2023-05-28T06:30:29Z) - Understanding and Constructing Latent Modality Structures in Multi-modal
Representation Learning [53.68371566336254]
優れたパフォーマンスの鍵は、完全なモダリティアライメントではなく、有意義な潜在モダリティ構造にある、と我々は主張する。
具体的には,1)モダリティ内正規化のための深い特徴分離損失,2)モダリティ間正規化のためのブラウン橋損失,3)モダリティ内正規化およびモダリティ間正規化のための幾何学的整合損失を設計する。
論文 参考訳(メタデータ) (2023-03-10T14:38:49Z) - An Information-Theoretic Perspective on Variance-Invariance-Covariance Regularization [52.44068740462729]
我々は、VICRegの目的に関する情報理論的な視点を示す。
我々は、VICRegの一般化を導出し、下流タスクに固有の利点を明らかにした。
既存のSSL技術よりも優れた情報理論の原理から派生したSSL手法のファミリーを紹介する。
論文 参考訳(メタデータ) (2023-03-01T16:36:25Z) - InteL-VAEs: Adding Inductive Biases to Variational Auto-Encoders via
Intermediary Latents [60.785317191131284]
本稿では,潜伏変数の中間集合を用いて,制御可能なバイアスでVAEを学習するための簡易かつ効果的な手法を提案する。
特に、学習した表現に対して、スパーシリティやクラスタリングといった望ましいプロパティを課すことができます。
これにより、InteL-VAEはより優れた生成モデルと表現の両方を学ぶことができる。
論文 参考訳(メタデータ) (2021-06-25T16:34:05Z) - Towards Learning Instantiated Logical Rules from Knowledge Graphs [20.251630903853016]
本稿では,知識グラフから一階述語論理規則を抽出するために最適化された確率論的学習ルールGPFLを提案する。
GPFLは、抽出された経路を非循環的な抽象規則であるテンプレートに一般化する新しい2段階ルール生成機構を利用する。
オーバーフィッティングルールの存在、予測性能への影響、およびオーバーフィッティングルールをフィルタリングする単純なバリデーション手法の有効性を明らかにする。
論文 参考訳(メタデータ) (2020-03-13T00:32:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。