論文の概要: Versatile Transition Generation with Image-to-Video Diffusion
- arxiv url: http://arxiv.org/abs/2508.01698v1
- Date: Sun, 03 Aug 2025 10:03:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 18:25:22.017116
- Title: Versatile Transition Generation with Image-to-Video Diffusion
- Title(参考訳): 画像と映像の拡散による揮発性遷移生成
- Authors: Zuhao Yang, Jiahui Zhang, Yingchen Yu, Shijian Lu, Song Bai,
- Abstract要約: 本稿では,スムーズで高忠実でセマンティックにコヒーレントな動画遷移を生成できるVersatile Transitionビデオ生成フレームワークを提案する。
我々は,VTGが4つのタスクすべてにおいて,優れた遷移性能を実現することを示す。
- 参考スコア(独自算出の注目度): 89.67070538399457
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Leveraging text, images, structure maps, or motion trajectories as conditional guidance, diffusion models have achieved great success in automated and high-quality video generation. However, generating smooth and rational transition videos given the first and last video frames as well as descriptive text prompts is far underexplored. We present VTG, a Versatile Transition video Generation framework that can generate smooth, high-fidelity, and semantically coherent video transitions. VTG introduces interpolation-based initialization that helps preserve object identity and handle abrupt content changes effectively. In addition, it incorporates dual-directional motion fine-tuning and representation alignment regularization to mitigate the limitations of pre-trained image-to-video diffusion models in motion smoothness and generation fidelity, respectively. To evaluate VTG and facilitate future studies on unified transition generation, we collected TransitBench, a comprehensive benchmark for transition generation covering two representative transition tasks: concept blending and scene transition. Extensive experiments show that VTG achieves superior transition performance consistently across all four tasks.
- Abstract(参考訳): テキスト、画像、構造図、運動軌跡を条件付きガイダンスとして活用することにより、拡散モデルは自動化された高品質のビデオ生成において大きな成功を収めた。
しかし、最初のビデオフレームと最後のビデオフレームと記述的なテキストプロンプトが与えられたスムーズで合理的な動画を生成することは、まだ未定である。
VTGは、スムーズで高忠実でセマンティックにコヒーレントな動画遷移を生成できるVTGである。
VTGは補間に基づく初期化を導入し、オブジェクトのアイデンティティを保存し、突然のコンテンツ変更を効果的に処理する。
さらに、両方向の運動微調整とアライメントアライメントの正則化を導入し、動きの滑らかさと生成忠実度において、予め訓練された画像間拡散モデルの限界を緩和する。
VTGの評価と統合トランジション生成の今後の研究を促進するために,概念ブレンディングとシーントランジションという2つの代表的なトランジションタスクをカバーするトランジション生成のための総合ベンチマークであるTransitionBenchを収集した。
広範囲な実験により、VTGは4つのタスクすべてにおいて、優れた遷移性能を達成することが示された。
関連論文リスト
- EfficientMT: Efficient Temporal Adaptation for Motion Transfer in Text-to-Video Diffusion Models [73.96414072072048]
既存の動き伝達法は、ガイド生成のための参照ビデオの動作表現を探索した。
本稿では,ビデオモーション転送のための新しい,効率的なエンドツーエンドフレームワークであるEfficientMTを提案する。
我々の実験は, フレキシブルな動作制御性を維持しつつ, 既存の手法よりも効率が良いことを示した。
論文 参考訳(メタデータ) (2025-03-25T05:51:14Z) - TVG: A Training-free Transition Video Generation Method with Diffusion Models [12.037716102326993]
遷移ビデオはメディア制作において重要な役割を担い、視覚的物語の流れとコヒーレンスを高める。
拡散モデルに基づくビデオ生成の最近の進歩は、トランジションを作成する新しい可能性を提供するが、フレーム間の関係モデリングの貧弱や突然のコンテンツ変更といった課題に直面している。
本稿では,これらの制約に対処するビデオレベルの拡散モデルを用いて,新たなトレーニング不要な遷移ビデオ生成(TVG)手法を提案する。
論文 参考訳(メタデータ) (2024-08-24T00:33:14Z) - Enhancing Video-Language Representations with Structural Spatio-Temporal Alignment [130.15775113897553]
フィンスタは微細な構造的時間的アライメント学習法である。
既存の13の強化されたビデオ言語モデルも一貫して改善されている。
論文 参考訳(メタデータ) (2024-06-27T15:23:36Z) - TC-Bench: Benchmarking Temporal Compositionality in Text-to-Video and Image-to-Video Generation [97.96178992465511]
生成したビデオは、新しい概念の出現と、時間経過とともに現実の動画のようにそれらの関係の遷移を取り入れるべきである、と我々は主張する。
ビデオ生成モデルの時間構成性を評価するため,細部まで作り上げたテキストプロンプトのベンチマークであるTC-Benchと,それに対応する地上の真理ビデオ,ロバストな評価指標を提案する。
論文 参考訳(メタデータ) (2024-06-12T21:41:32Z) - MAVIN: Multi-Action Video Generation with Diffusion Models via Transition Video Infilling [19.004339956475498]
MAVINは、2つの動画をシームレスに接続し、結合的な統合シーケンスを形成するトランジションビデオを生成するように設計されている。
従来の品質基準を補完し,時間的コヒーレンスと滑らかさを評価するための新しい指標CLIP-RS(CLIP Relative Smoothness)を導入する。
馬とトラのシナリオに関する実験結果は、滑らかでコヒーレントなビデオ遷移を生成するMAVINの優れた性能を示す。
論文 参考訳(メタデータ) (2024-05-28T09:46:09Z) - Control-A-Video: Controllable Text-to-Video Diffusion Models with Motion Prior and Reward Feedback Learning [50.60891619269651]
Control-A-Videoは制御可能なT2V拡散モデルであり、テキストプロンプトやエッジや奥行きマップのような参照制御マップに条件付のビデオを生成することができる。
本稿では,拡散に基づく生成プロセスに,コンテンツの事前と動作を組み込む新しい手法を提案する。
我々のフレームワークは、制御可能なテキスト・ツー・ビデオ生成における既存の最先端手法と比較して、高品質で一貫性のあるビデオを生成する。
論文 参考訳(メタデータ) (2023-05-23T09:03:19Z) - Dual-MTGAN: Stochastic and Deterministic Motion Transfer for
Image-to-Video Synthesis [38.41763708731513]
本稿では,映像データと映像データを入力として取り込むDual Motion Transfer GAN(Dual-MTGAN)を提案する。
我々のDual-MTGANは、決定論的モーショントランスファーとモーションジェネレーションを行うことができる。
提案モデルは、ポーズや顔のランドマークのような事前定義された動作特徴を利用することなく、エンドツーエンドでトレーニングされる。
論文 参考訳(メタデータ) (2021-02-26T06:54:48Z) - Motion-Attentive Transition for Zero-Shot Video Object Segmentation [99.44383412488703]
ゼロショットオブジェクトセグメンテーションのためのモーション・アテンタティブ・トランジション・ネットワーク(MATNet)を提案する。
モーション・アテンティブ・トランジション (MAT) と呼ばれる非対称のアテンションブロックは、2ストリームエンコーダ内に設計されている。
このように、エンコーダは深く相互に作用し、物体の動きと外観の間の密な階層的な相互作用を可能にする。
論文 参考訳(メタデータ) (2020-03-09T16:58:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。