論文の概要: Multi-turn Natural Language to Graph Query Language Translation
- arxiv url: http://arxiv.org/abs/2508.01871v1
- Date: Sun, 03 Aug 2025 17:56:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 18:25:22.100027
- Title: Multi-turn Natural Language to Graph Query Language Translation
- Title(参考訳): マルチターン自然言語からグラフクエリ言語への変換
- Authors: Yuanyuan Liang, Lei Pan, Tingyu Xie, Yunshi Lan, Weining Qian,
- Abstract要約: 現実的なアプリケーションでは、グラフデータベースとのユーザインタラクションは通常、マルチターン、動的、コンテキスト依存である。
シングルターン変換に焦点を当てた研究は、マルチターン対話や複雑なコンテキスト依存に効果的に対応できない。
大規模言語モデル(LLM)に基づくマルチターンNL2GQLデータセットの自動構築法を提案する。
- 参考スコア(独自算出の注目度): 15.249580032219336
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In recent years, research on transforming natural language into graph query language (NL2GQL) has been increasing. Most existing methods focus on single-turn transformation from NL to GQL. In practical applications, user interactions with graph databases are typically multi-turn, dynamic, and context-dependent. While single-turn methods can handle straightforward queries, more complex scenarios often require users to iteratively adjust their queries, investigate the connections between entities, or request additional details across multiple dialogue turns. Research focused on single-turn conversion fails to effectively address multi-turn dialogues and complex context dependencies. Additionally, the scarcity of high-quality multi-turn NL2GQL datasets further hinders the progress of this field. To address this challenge, we propose an automated method for constructing multi-turn NL2GQL datasets based on Large Language Models (LLMs) , and apply this method to develop the MTGQL dataset, which is constructed from a financial market graph database and will be publicly released for future research. Moreover, we propose three types of baseline methods to assess the effectiveness of multi-turn NL2GQL translation, thereby laying a solid foundation for future research.
- Abstract(参考訳): 近年,自然言語をグラフクエリ言語(NL2GQL)に変換する研究が増えている。
既存のほとんどのメソッドは、NLからGQLへのシングルターン変換にフォーカスしている。
現実的なアプリケーションでは、グラフデータベースとのユーザインタラクションは通常、マルチターン、動的、コンテキスト依存である。
シングルターンのメソッドは単純なクエリを処理できるが、より複雑なシナリオでは、ユーザがクエリを反復的に調整したり、エンティティ間の接続を調べたり、複数のダイアログをまたいだ詳細をリクエストしたりする必要がある。
シングルターン変換に焦点を当てた研究は、マルチターン対話や複雑なコンテキスト依存に効果的に対応できない。
さらに、高品質なマルチターンNL2GQLデータセットの不足は、この分野の進歩をさらに妨げている。
そこで本稿では,Large Language Models (LLM) に基づくマルチターンNL2GQLデータセットの自動構築手法を提案し,金融市場グラフデータベースから構築したMTGQLデータセットの開発に本手法を適用する。
さらに,マルチターンNL2GQL翻訳の有効性を評価するために,3種類のベースライン手法を提案する。
関連論文リスト
- Text-to-SPARQL Goes Beyond English: Multilingual Question Answering Over Knowledge Graphs through Human-Inspired Reasoning [51.203811759364925]
mKGQAgentは、自然言語の質問をSPARQLクエリに変換し、モジュール化された解釈可能なサブタスクに変換するタスクを分解する。
2025年のText2SPARQLチャレンジにおいて、DBpediaとCorporateベースのKGQAベンチマークに基づいて評価され、私たちのアプローチは、他の参加者の中で第一に行われました。
論文 参考訳(メタデータ) (2025-07-22T19:23:03Z) - Judging Quality Across Languages: A Multilingual Approach to Pretraining Data Filtering with Language Models [52.22235443948351]
大規模言語モデル(LLM)を効果的に事前学習するためには,高品質な多言語学習データが不可欠である
本稿では,多言語多言語データを大規模に効率的にキュレートする体系的アプローチであるJQLを紹介する。
JQLは、LLMのアノテーション機能を、事前トレーニングされた多言語埋め込みに基づいて軽量アノテータに蒸留する。
論文 参考訳(メタデータ) (2025-05-28T11:06:54Z) - New Dataset and Methods for Fine-Grained Compositional Referring Expression Comprehension via Specialist-MLLM Collaboration [49.180693704510006]
Referring Expression (REC) は、言語理解、画像理解、言語と画像の接点の相互作用を評価するためのクロスモーダルなタスクである。
MLLM(Multimodal Large Language Models)の試験場として機能する。
論文 参考訳(メタデータ) (2025-02-27T13:58:44Z) - NAT-NL2GQL: A Novel Multi-Agent Framework for Translating Natural Language to Graph Query Language [13.661054027428868]
自然言語をグラフクエリ言語に変換する新しいフレームワークであるNAT-NL2GQLを提案する。
私たちのフレームワークは、プリプロセッサエージェント、ジェネレータエージェント、Refinerエージェントの3つの相乗的エージェントで構成されています。
nGQL構文に基づく高品質なオープンソースNL2GQLデータセットの不足を踏まえ、金融市場グラフデータベースから構築されたデータセットであるStockGQLを開発した。
論文 参考訳(メタデータ) (2024-12-11T04:14:09Z) - Towards Evaluating Large Language Models for Graph Query Generation [49.49881799107061]
大言語モデル(LLM)は、生成人工知能(GenAI)の景観に革命をもたらしている
本稿では,オープンアクセス LLM を用いてグラフデータベースと対話する強力な言語としてクエリを生成することの課題について比較検討する。
クエリ生成精度を実証的に分析したところ、Claude Sonnet 3.5は特定のドメインでそれよりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-11-13T09:11:56Z) - MST5 -- Multilingual Question Answering over Knowledge Graphs [1.6470999044938401]
知識グラフ質問回答(KGQA)は、自然言語を用いたグラフベースモデルに格納された膨大な知識のクエリを単純化する。
既存の多言語KGQAシステムは、英語システムに匹敵する性能を達成するための課題に直面している。
本稿では,言語コンテキストとエンティティ情報を言語モデルの処理パイプラインに直接組み込むことで,多言語KGQAシステムを強化するための簡易なアプローチを提案する。
論文 参考訳(メタデータ) (2024-07-08T15:37:51Z) - UQE: A Query Engine for Unstructured Databases [71.49289088592842]
構造化されていないデータ分析を可能にするために,大規模言語モデルの可能性を検討する。
本稿では,非構造化データ収集からの洞察を直接問合せ,抽出するUniversal Query Engine (UQE)を提案する。
論文 参考訳(メタデータ) (2024-06-23T06:58:55Z) - NL2KQL: From Natural Language to Kusto Query [1.7931930942711818]
NL2KQLは、大規模言語モデル(LLM)を使用して自然言語クエリ(NLQ)をKusto Query Language(KQL)クエリに変換する革新的なフレームワークである。
NL2KQLのパフォーマンスを検証するために、オンライン(クエリ実行に基づく)とオフライン(クエリ解析に基づく)メトリクスの配列を使用します。
論文 参考訳(メタデータ) (2024-04-03T01:09:41Z) - $R^3$-NL2GQL: A Model Coordination and Knowledge Graph Alignment Approach for NL2GQL [45.13624736815995]
我々はR3$-NL2GQLという新しいアプローチを導入し、ランク付け、書き換え、タスクの精錬のために、小規模と大規模なファンデーションモデルを統合する。
我々は、グラフデータベースマニュアルと選択されたオープンソース知識グラフ(KGs)を基にしたバイリンガルデータセットを開発した。
論文 参考訳(メタデータ) (2023-11-03T12:11:12Z) - Efficient Deployment of Conversational Natural Language Interfaces over
Databases [45.52672694140881]
本稿では、自然言語からクエリ言語への機械学習モデルを開発するためのトレーニングデータセット収集を高速化する新しい手法を提案する。
本システムでは,対話セッションを定義した対話型多言語データを生成することができる。
論文 参考訳(メタデータ) (2020-05-31T19:16:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。