StreamAgent: Towards Anticipatory Agents for Streaming Video Understanding
- URL: http://arxiv.org/abs/2508.01875v1
- Date: Sun, 03 Aug 2025 18:15:42 GMT
- Title: StreamAgent: Towards Anticipatory Agents for Streaming Video Understanding
- Authors: Haolin Yang, Feilong Tang, Linxiao Zhao, Xiang An, Ming Hu, Huifa Li, Xinlin Zhuang, Boqian Wang, Yifan Lu, Xiaofeng Zhang, Abdalla Swikir, Junjun He, Zongyuan Ge, Imran Razzak,
- Abstract summary: We propose a StreamAgent that anticipates the temporal intervals and spatial regions expected to contain future task-relevant information.<n>We integrate question semantics and historical observations through prompting the anticipatory agent to anticipate the temporal progression of key events.<n>Our method outperforms existing methods in response accuracy and real-time efficiency, highlighting its practical value for real-world streaming scenarios.
- Score: 31.935977086526865
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Real-time streaming video understanding in domains such as autonomous driving and intelligent surveillance poses challenges beyond conventional offline video processing, requiring continuous perception, proactive decision making, and responsive interaction based on dynamically evolving visual content. However, existing methods rely on alternating perception-reaction or asynchronous triggers, lacking task-driven planning and future anticipation, which limits their real-time responsiveness and proactive decision making in evolving video streams. To this end, we propose a StreamAgent that anticipates the temporal intervals and spatial regions expected to contain future task-relevant information to enable proactive and goal-driven responses. Specifically, we integrate question semantics and historical observations through prompting the anticipatory agent to anticipate the temporal progression of key events, align current observations with the expected future evidence, and subsequently adjust the perception action (e.g., attending to task-relevant regions or continuously tracking in subsequent frames). To enable efficient inference, we design a streaming KV-cache memory mechanism that constructs a hierarchical memory structure for selective recall of relevant tokens, enabling efficient semantic retrieval while reducing the overhead of storing all tokens in the traditional KV-cache. Extensive experiments on streaming and long video understanding tasks demonstrate that our method outperforms existing methods in response accuracy and real-time efficiency, highlighting its practical value for real-world streaming scenarios.
Related papers
- FDDet: Frequency-Decoupling for Boundary Refinement in Temporal Action Detection [4.015022008487465]
Large-scale pre-trained video encoders tend to introduce background clutter and irrelevant semantics, leading to context confusion and boundaries.<n>We propose a frequency-aware decoupling network that improves action discriminability by filtering out noisy semantics captured by pre-trained models.<n>Our method achieves state-of-the-art performance on temporal action detection benchmarks.
arXiv Detail & Related papers (2025-04-01T10:57:37Z) - Object-Centric Temporal Consistency via Conditional Autoregressive Inductive Biases [69.46487306858789]
Conditional Autoregressive Slot Attention (CA-SA) is a framework that enhances the temporal consistency of extracted object-centric representations in video-centric vision tasks.
We present qualitative and quantitative results showing that our proposed method outperforms the considered baselines on downstream tasks.
arXiv Detail & Related papers (2024-10-21T07:44:44Z) - Motion Forecasting in Continuous Driving [41.6423398623095]
In autonomous driving, motion forecasting takes place repeatedly and continuously as the self-driving car moves.
Existing forecasting methods process each driving scene within a certain range independently.
We propose a novel motion forecasting framework for continuous driving, named RealMotion.
arXiv Detail & Related papers (2024-10-08T13:04:57Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - AntPivot: Livestream Highlight Detection via Hierarchical Attention
Mechanism [64.70568612993416]
We formulate a new task Livestream Highlight Detection, discuss and analyze the difficulties listed above and propose a novel architecture AntPivot to solve this problem.
We construct a fully-annotated dataset AntHighlight to instantiate this task and evaluate the performance of our model.
arXiv Detail & Related papers (2022-06-10T05:58:11Z) - Self-Regulated Learning for Egocentric Video Activity Anticipation [147.9783215348252]
Self-Regulated Learning (SRL) aims to regulate the intermediate representation consecutively to produce representation that emphasizes the novel information in the frame of the current time-stamp.
SRL sharply outperforms existing state-of-the-art in most cases on two egocentric video datasets and two third-person video datasets.
arXiv Detail & Related papers (2021-11-23T03:29:18Z) - CCVS: Context-aware Controllable Video Synthesis [95.22008742695772]
presentation introduces a self-supervised learning approach to the synthesis of new video clips from old ones.
It conditions the synthesis process on contextual information for temporal continuity and ancillary information for fine control.
arXiv Detail & Related papers (2021-07-16T17:57:44Z) - A Prospective Study on Sequence-Driven Temporal Sampling and Ego-Motion
Compensation for Action Recognition in the EPIC-Kitchens Dataset [68.8204255655161]
Action recognition is one of the top-challenging research fields in computer vision.
ego-motion recorded sequences have become of important relevance.
The proposed method aims to cope with it by estimating this ego-motion or camera motion.
arXiv Detail & Related papers (2020-08-26T14:44:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.