論文の概要: Toward Efficient Spiking Transformers: Synapse Pruning Meets Synergistic Learning-Based Compensation
- arxiv url: http://arxiv.org/abs/2508.01992v1
- Date: Mon, 04 Aug 2025 02:19:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 18:25:22.145433
- Title: Toward Efficient Spiking Transformers: Synapse Pruning Meets Synergistic Learning-Based Compensation
- Title(参考訳): 効率的なスパイキング変圧器を目指して--シナプス・プルーニングとシナジスティック学習に基づく補償
- Authors: Hongze Sun, Wuque Cai, Duo Chen, Shifeng Mao, Jiayi He, Zhenxing Wang, Dezhong Yao, Daqing Guo,
- Abstract要約: 本稿では, シナプスプルーニングとシナジスティック学習に基づく補償戦略を組み合わせることで, 軽量トランスフォーマーモデルの導出を提案する。
ベンチマークデータセットの実験により、提案手法は、競合性能を維持しながら、モデルサイズと計算オーバーヘッドを大幅に削減することを示した。
- 参考スコア(独自算出の注目度): 5.496016535669561
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a foundational architecture of artificial intelligence models, Transformer has been recently adapted to spiking neural networks with promising performance across various tasks. However, existing spiking Transformer (ST)-based models require a substantial number of parameters and incur high computational costs, thus limiting their deployment in resource-constrained environments. To address these challenges, we propose combining synapse pruning with a synergistic learning-based compensation strategy to derive lightweight ST-based models. Specifically, two types of tailored pruning strategies are introduced to reduce redundancy in the weight matrices of ST blocks: an unstructured $\mathrm{L_{1}P}$ method to induce sparse representations, and a structured DSP method to induce low-rank representations. In addition, we propose an enhanced spiking neuron model, termed the synergistic leaky integrate-and-fire (sLIF) neuron, to effectively compensate for model pruning through synergistic learning between synaptic and intrinsic plasticity mechanisms. Extensive experiments on benchmark datasets demonstrate that the proposed methods significantly reduce model size and computational overhead while maintaining competitive performance. These results validate the effectiveness of the proposed pruning and compensation strategies in constructing efficient and high-performing ST-based models.
- Abstract(参考訳): 人工知能モデルの基本的なアーキテクチャとして、Transformerは、最近、様々なタスクにわたって有望なパフォーマンスを持つニューラルネットワークに適応した。
しかし、既存のスパイキングトランスフォーマー(ST)ベースのモデルは、かなりの数のパラメータと高い計算コストを必要とするため、リソース制約のある環境への展開が制限される。
これらの課題に対処するために, シナプスプルーニングとシナジスティック学習に基づく補償戦略を組み合わせることで, 軽量STベースモデルを導出することを提案する。
具体的には、STブロックの重み行列の冗長性を低減するために、スパース表現を誘導する非構造化$\mathrm{L_{1}P}$法と、低ランク表現を誘導する構造化DSP法という2つの方法を導入する。
さらに, シナプスと内在的な可塑性機構の相乗学習を通じて, モデルプルーニングを効果的に補うために, シナプス性漏洩統合火災ニューロン(sLIF)と呼ばれるスパイキングニューロンモデルを提案する。
ベンチマークデータセットの大規模な実験により、提案手法は、競合性能を維持しながら、モデルサイズと計算オーバーヘッドを大幅に削減することを示した。
これらの結果は, 効率的かつ高性能なSTモデル構築におけるプルーニングと補償戦略の有効性を検証した。
関連論文リスト
- Model Hemorrhage and the Robustness Limits of Large Language Models [119.46442117681147]
大規模言語モデル(LLM)は、自然言語処理タスク全体で強力なパフォーマンスを示すが、デプロイメント用に修正された場合、大幅なパフォーマンス低下を経験する。
この現象をモデル出血(パラメータ変更とアーキテクチャ変更によるパフォーマンス低下)と定義する。
論文 参考訳(メタデータ) (2025-03-31T10:16:03Z) - BHViT: Binarized Hybrid Vision Transformer [53.38894971164072]
モデルバイナライゼーションは畳み込みニューラルネットワーク(CNN)のリアルタイムおよびエネルギー効率の計算を可能にした。
本稿では,バイナライズフレンドリーなハイブリッドViTアーキテクチャであるBHViTとそのバイナライズモデルを提案する。
提案アルゴリズムは,バイナリ ViT 手法間でSOTA 性能を実現する。
論文 参考訳(メタデータ) (2025-03-04T08:35:01Z) - Lattice-Based Pruning in Recurrent Neural Networks via Poset Modeling [0.0]
リカレントニューラルネットワーク(RNN)はシーケンスモデリングタスクの中心であるが、その高い計算複雑性はスケーラビリティとリアルタイムデプロイメントの課題を引き起こす。
本稿では,RNNを部分的に順序付けられた集合(命題)としてモデル化し,対応する依存格子を構成する新しいフレームワークを提案する。
既約ニューロンを同定することにより、格子ベースのプルーニングアルゴリズムは、冗長なニューロンを除去しながら、重要な接続を選択的に保持する。
論文 参考訳(メタデータ) (2025-02-23T10:11:38Z) - DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
本稿では,事前学習したFFN層を計算ブロックに分割することで,分散化を実現するDSMoEを提案する。
我々は,Sigmoid アクティベーションとストレートスルー推定器を用いた適応型エキスパートルーティングを実装し,トークンがモデル知識の様々な側面に柔軟にアクセスできるようにする。
LLaMAモデルを用いた実験により、DSMoEは既存のプルーニング法やMoE法に比べて優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2025-02-18T02:37:26Z) - Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
複素・非線形・雑音に隠れた潜在低次元構造を持つ高次元データセットをモデル化する課題に取り組む。
我々のアプローチは、非パラメトリック回帰、因子モデル、高次元回帰のためのニューラルネットワークの概念のシームレスな統合を可能にする。
論文 参考訳(メタデータ) (2025-02-16T23:13:55Z) - Adaptive Error-Bounded Hierarchical Matrices for Efficient Neural Network Compression [0.0]
本稿では,物理インフォームドニューラルネットワーク(PINN)に適した動的,エラーバウンドな階層行列 (H-matrix) 圧縮手法を提案する。
提案手法は,ニューラル・タンジェント・カーネル(NTK)の本質的性質を保ちながら,大規模物理モデルにおける計算複雑性とメモリ要求を低減させる。
実験により, この手法は, 高精度を維持し, 一般化能力を向上させることにより, Singular Value Decomposition (SVD) やプルーニング, 量子化などの従来の圧縮手法よりも優れていることを示した。
論文 参考訳(メタデータ) (2024-09-11T05:55:51Z) - LORTSAR: Low-Rank Transformer for Skeleton-based Action Recognition [4.375744277719009]
LORTSARは2つの主要なトランスフォーマーベースモデル、"Hyperformer"と"STEP-CATFormer"に適用される。
本手法は, 認識精度の劣化や性能向上などにより, モデルパラメータの数を大幅に削減することができる。
これは、SVDと圧縮後の微調整を組み合わせることでモデル効率が向上し、人間の行動認識におけるより持続的で軽量で高性能な技術への道が開けることを確認する。
論文 参考訳(メタデータ) (2024-07-19T20:19:41Z) - Exploiting Activation Sparsity with Dense to Dynamic-k Mixture-of-Experts Conversion [4.716845031095804]
トランスフォーマーモデルは、高い計算要求のため、実用的な制限に直面する可能性がある。
このようなモデルは、ネットワークの一部を等価なMixture-of-Experts (MoE)層に変換することで、推論コストを削減するために利用することができる。
本研究では,基本モデルの活性化間隔を適切に正規化することにより,変換効率を大幅に向上できることを実証する。
論文 参考訳(メタデータ) (2023-10-06T16:34:51Z) - Efficient and Flexible Neural Network Training through Layer-wise Feedback Propagation [49.44309457870649]
レイヤワイドフィードバックフィードバック(LFP)は、ニューラルネットワークのような予測器のための新しいトレーニング原則である。
LFPはそれぞれの貢献に基づいて個々のニューロンに報酬を分解する。
提案手法は,ネットワークの有用な部分と有害な部分の弱体化を両立させる手法である。
論文 参考訳(メタデータ) (2023-08-23T10:48:28Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
画像超解像(SR)は、CNNからトランスフォーマーアーキテクチャへの広範なニューラルネットワーク設計を目撃している。
本研究は,市販のネットワーク設計を生かし,基礎となる計算オーバーヘッドを低減するため,超高解像度イテレーションにおけるネットワークプルーニングの可能性について検討する。
本研究では, ランダムネットワークのスパース構造を最適化し, 重要でない重みを小さめに微調整することにより, 反復型軟収縮率(ISS-P)法を提案する。
論文 参考訳(メタデータ) (2023-03-16T21:06:13Z) - STN: Scalable Tensorizing Networks via Structure-Aware Training and
Adaptive Compression [10.067082377396586]
本稿では,モデルサイズと分解構造を適応的に調整するスケーラビリティネットワーク(STN)を提案する。
STNは任意のネットワークアーキテクチャと互換性があり、他のテンソル化バージョンよりも高い圧縮性能と柔軟性を実現する。
論文 参考訳(メタデータ) (2022-05-30T15:50:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。