論文の概要: Marco-Voice Technical Report
- arxiv url: http://arxiv.org/abs/2508.02038v2
- Date: Wed, 06 Aug 2025 03:54:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-07 13:27:10.373558
- Title: Marco-Voice Technical Report
- Title(参考訳): Marco-Voice 技術報告
- Authors: Fengping Tian, Chenyang Lyu, Xuanfan Ni, Haoqin Sun, Qingjuan Li, Zhiqiang Qian, Haijun Li, Longyue Wang, Zhao Xu, Weihua Luo, Kaifu Zhang,
- Abstract要約: この研究の目的は、高度に表現力があり、制御可能で、自然な音声生成を実現するための長年にわたる課題に対処することである。
提案手法では, 効果的な話者・感情の絡み合い機構を導入し, コントラスト学習を行う。
包括的学習と評価を支援するため,高品質な感情音声データセットCSEMOTIONSを構築した。
- 参考スコア(独自算出の注目度): 35.01600797874603
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a multifunctional speech synthesis system that integrates voice cloning and emotion control speech synthesis within a unified framework. The goal of this work is to address longstanding challenges in achieving highly expressive, controllable, and natural speech generation that faithfully preserves speaker identity across diverse linguistic and emotional contexts. Our approach introduces an effective speaker-emotion disentanglement mechanism with in-batch contrastive learning, enabling independent manipulation of speaker identity and eemotional style, as well as rotational emotional embedding integration method for smooth emotion control. To support comprehensive training and evaluation, we construct CSEMOTIONS, a high-quality emotional speech dataset containing 10 hours of Mandarin speech from six professional speakers across seven emotional categories. Extensive experiments demonstrate that our system, Marco-Voice, achieves substantial improvements in both objective and subjective metrics. Comprehensive evaluations and analysis were conducted, results show that MarcoVoice delivers competitive performance in terms of speech clarity and emotional richness, representing a substantial advance in the field of expressive neural speech synthesis. Our code and dataset are publicly available at https://github.com/AIDC-AI/Marco-Voice and https://huggingface.co/datasets/AIDC-AI/CSEMOTIONS respectively.
- Abstract(参考訳): 本稿では,音声クローニングと感情制御音声合成を統合した多機能音声合成システムを提案する。
この研究の目的は、多種多様な言語的・感情的な文脈で話者のアイデンティティを忠実に保存する、高度に表現され、制御され、そして自然な音声生成を達成するための長年にわたる課題に対処することである。
提案手法では, 話者同一性や感情スタイルを独立に操作し, 感情制御を円滑に行うために, 効果的な話者・感情分離機構を導入している。
CSEMOTIONSは,7つの感情カテゴリーにまたがる6人のプロ話者による10時間のマンダリン音声を含む,高品質な感情音声データセットである。
大規模な実験により、我々のシステムであるMarco-Voiceは、客観的および主観的メトリクスの両方において大幅な改善を達成している。
その結果,MarcoVoiceは音声の明瞭度や感情の豊かさの点で競争力を発揮し,表現的ニューラル音声合成の分野ではかなりの進歩を示していることがわかった。
私たちのコードとデータセットは、https://github.com/AIDC-AI/Marco-Voiceとhttps://huggingface.co/datasets/AIDC-AI/CSEMOTIONSで公開されています。
関連論文リスト
- EmoVoice: LLM-based Emotional Text-To-Speech Model with Freestyle Text Prompting [48.56693150755667]
EmoVoiceは、大きな言語モデル(LLM)を利用して、きめ細かい自然言語の感情制御を可能にする、感情制御可能な新しいTSモデルである。
EmoVoice-DBは、表現力のある音声と自然言語記述によるきめ細かい感情ラベルを特徴とする、高品質な40時間感情データセットである。
論文 参考訳(メタデータ) (2025-04-17T11:50:04Z) - PROEMO: Prompt-Driven Text-to-Speech Synthesis Based on Emotion and Intensity Control [20.873353104077857]
本稿では,素早い感情制御を中心にしたアプローチを提案する。
提案アーキテクチャは,複数話者間での感情と強度制御を取り入れたアーキテクチャである。
我々は,大言語モデル(LLM)を用いて,言語コンテンツを保存しながら音声韻律を操作する。
論文 参考訳(メタデータ) (2025-01-10T12:10:30Z) - Controlling Emotion in Text-to-Speech with Natural Language Prompts [29.013577423045255]
本稿では,感情に富んだテキストの繰り返しから派生した埋め込みを前提としたシステムを提案する。
話者とプロンプト埋め込みの合同表現は、トランスフォーマーベースアーキテクチャ内のいくつかの点で統合される。
本手法は感情音声とテキストデータセットを融合して学習し,モデルの一般化能力を高めるため,各訓練におけるプロンプトを変化させる。
論文 参考訳(メタデータ) (2024-06-10T15:58:42Z) - DurFlex-EVC: Duration-Flexible Emotional Voice Conversion Leveraging Discrete Representations without Text Alignment [34.19748360507656]
DurFlex-EVCは、テキストやアライメント情報を必要とせずに動作する、持続的フレキシブルなECVフレームワークである。
本稿では,テキスト・テキスト・アライメントの不要さを解消し,コンテントを表す個別の単位に音声をアライメントすることで,文脈情報をモデル化するユニット・アライメント手法を提案する。
また、音声の感情特性を正確に操作できるように、コンテンツと感情のスタイルを効果的に切り離すスタイルオートエンコーダを設計する。
論文 参考訳(メタデータ) (2024-01-16T03:39:35Z) - Attention-based Interactive Disentangling Network for Instance-level
Emotional Voice Conversion [81.1492897350032]
感情音声変換(Emotional Voice Conversion)は、非感情成分を保存しながら、与えられた感情に応じて音声を操作することを目的とする。
本稿では,音声変換にインスタンスワイドな感情知識を活用する,意図に基づく対話型ディスタングネットワーク(AINN)を提案する。
論文 参考訳(メタデータ) (2023-12-29T08:06:45Z) - AffectEcho: Speaker Independent and Language-Agnostic Emotion and Affect
Transfer for Speech Synthesis [13.918119853846838]
Affectは、原子価、覚醒、強さを含む感情的特徴であり、真正な会話を可能にする重要な属性である。
本稿では,Vector Quantized Codebookを用いた感情翻訳モデルAffectEchoを提案する。
それぞれの話者に特有のアイデンティティ、スタイル、感情のリズムを保ちながら、生成した音声の感情を制御する方法の有効性を実証する。
論文 参考訳(メタデータ) (2023-08-16T06:28:29Z) - In-the-wild Speech Emotion Conversion Using Disentangled Self-Supervised
Representations and Neural Vocoder-based Resynthesis [15.16865739526702]
本稿では,自己教師ネットワークを用いて発話の語彙的,話者的,感情的な内容を切り離す手法を提案する。
次に、HiFiGANボコーダを用いて、不整合表現をターゲット感情の音声信号に再合成する。
その結果,提案手法は入力音声の感情内容に適度に適応し,対象感情に対して自然な音声を合成できることがわかった。
論文 参考訳(メタデータ) (2023-06-02T21:02:51Z) - Emotion Intensity and its Control for Emotional Voice Conversion [77.05097999561298]
感情音声変換(EVC)は、言語内容と話者のアイデンティティを保ちながら、発話の感情状態を変換しようとする。
本稿では,感情の強さを明示的に表現し,制御することを目的とする。
本稿では,話者スタイルを言語内容から切り離し,連続した空間に埋め込み,感情埋め込みのプロトタイプを形成するスタイルに符号化することを提案する。
論文 参考訳(メタデータ) (2022-01-10T02:11:25Z) - EMOVIE: A Mandarin Emotion Speech Dataset with a Simple Emotional
Text-to-Speech Model [56.75775793011719]
音声ファイルを含む9,724のサンプルとその感情ラベル付きアノテーションを含むマンダリン感情音声データセットを導入,公開する。
入力として追加の参照音声を必要とするこれらのモデルとは異なり、我々のモデルは入力テキストから直接感情ラベルを予測し、感情埋め込みに基づいてより表現力のある音声を生成することができる。
実験段階では、まず感情分類タスクによってデータセットの有効性を検証し、次に提案したデータセットに基づいてモデルをトレーニングし、一連の主観評価を行う。
論文 参考訳(メタデータ) (2021-06-17T08:34:21Z) - Reinforcement Learning for Emotional Text-to-Speech Synthesis with
Improved Emotion Discriminability [82.39099867188547]
感情的テキスト音声合成(ETTS)は近年大きく進歩している。
i-ETTSと呼ばれるETTSの新しい対話型トレーニングパラダイムを提案する。
i-ETTSの最適化品質を確保するため、強化学習による反復トレーニング戦略を策定します。
論文 参考訳(メタデータ) (2021-04-03T13:52:47Z) - Limited Data Emotional Voice Conversion Leveraging Text-to-Speech:
Two-stage Sequence-to-Sequence Training [91.95855310211176]
感情的音声変換は、言語内容と話者のアイデンティティを保ちながら、発話の感情状態を変えることを目的としている。
本研究では,感情音声データ量の少ない連続音声変換のための新しい2段階学習戦略を提案する。
提案フレームワークはスペクトル変換と韻律変換の両方が可能であり、客観的評価と主観評価の両方において最先端のベースラインを大幅に改善する。
論文 参考訳(メタデータ) (2021-03-31T04:56:14Z) - Seen and Unseen emotional style transfer for voice conversion with a new
emotional speech dataset [84.53659233967225]
感情的音声変換は、言語内容と話者のアイデンティティを保ちながら、音声中の感情的韻律を変換することを目的としている。
可変自動符号化ワッサーシュタイン生成対向ネットワーク(VAW-GAN)に基づく新しいフレームワークを提案する。
提案するフレームワークは,ベースラインフレームワークを一貫して上回り,優れた性能を発揮することを示す。
論文 参考訳(メタデータ) (2020-10-28T07:16:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。