Model Recycling Framework for Multi-Source Data-Free Supervised Transfer Learning
- URL: http://arxiv.org/abs/2508.02039v1
- Date: Mon, 04 Aug 2025 04:11:40 GMT
- Title: Model Recycling Framework for Multi-Source Data-Free Supervised Transfer Learning
- Authors: Sijia Wang, Ricardo Henao,
- Abstract summary: We propose a model recycling framework for parameter-efficient training models.<n>Our framework makes it possible for Model as a Service (M) providers to build libraries of efficient pre-trained models.
- Score: 21.316182796525702
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Increasing concerns for data privacy and other difficulties associated with retrieving source data for model training have created the need for source-free transfer learning, in which one only has access to pre-trained models instead of data from the original source domains. This setting introduces many challenges, as many existing transfer learning methods typically rely on access to source data, which limits their direct applicability to scenarios where source data is unavailable. Further, practical concerns make it more difficult, for instance efficiently selecting models for transfer without information on source data, and transferring without full access to the source models. So motivated, we propose a model recycling framework for parameter-efficient training of models that identifies subsets of related source models to reuse in both white-box and black-box settings. Consequently, our framework makes it possible for Model as a Service (MaaS) providers to build libraries of efficient pre-trained models, thus creating an opportunity for multi-source data-free supervised transfer learning.
Related papers
- Encapsulating Knowledge in One Prompt [56.31088116526825]
KiOP encapsulates knowledge from various models into a solitary prompt without altering the original models or requiring access to the training data.
From a practicality standpoint, this paradigm proves the effectiveness of Visual Prompt in data inaccessible contexts.
Experiments across various datasets and models demonstrate the efficacy of the proposed KiOP knowledge transfer paradigm.
arXiv Detail & Related papers (2024-07-16T16:35:23Z) - Update Selective Parameters: Federated Machine Unlearning Based on Model Explanation [46.86767774669831]
We propose a more effective and efficient federated unlearning scheme based on the concept of model explanation.
We select the most influential channels within an already-trained model for the data that need to be unlearned.
arXiv Detail & Related papers (2024-06-18T11:43:20Z) - Cross-Domain Transfer Learning with CoRTe: Consistent and Reliable
Transfer from Black-Box to Lightweight Segmentation Model [25.3403116022412]
CoRTe is a pseudo-labelling function that extracts reliable knowledge from a black-box source model.
We benchmark CoRTe on two synthetic-to-real settings, demonstrating remarkable results when using black-box models to transfer knowledge on lightweight models for a target data distribution.
arXiv Detail & Related papers (2024-02-20T16:35:14Z) - Fantastic Gains and Where to Find Them: On the Existence and Prospect of
General Knowledge Transfer between Any Pretrained Model [74.62272538148245]
We show that for arbitrary pairings of pretrained models, one model extracts significant data context unavailable in the other.
We investigate if it is possible to transfer such "complementary" knowledge from one model to another without performance degradation.
arXiv Detail & Related papers (2023-10-26T17:59:46Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [47.432215933099016]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.<n>This creates a barrier to fusing knowledge across individual models to yield a better single model.<n>We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - Hub-Pathway: Transfer Learning from A Hub of Pre-trained Models [89.44031286278347]
We propose a Hub-Pathway framework to enable knowledge transfer from a model hub.
The proposed framework can be trained end-to-end with the target task-specific loss.
Experiment results on computer vision and reinforcement learning tasks demonstrate that the framework achieves the state-of-the-art performance.
arXiv Detail & Related papers (2022-06-08T08:00:12Z) - Deep Transfer Learning for Multi-source Entity Linkage via Domain
Adaptation [63.24594955429465]
Multi-source entity linkage is critical in high-impact applications such as data cleaning and user stitching.
AdaMEL is a deep transfer learning framework that learns generic high-level knowledge to perform multi-source entity linkage.
Our framework achieves state-of-the-art results with 8.21% improvement on average over methods based on supervised learning.
arXiv Detail & Related papers (2021-10-27T15:20:41Z) - Decentralized Federated Learning Preserves Model and Data Privacy [77.454688257702]
We propose a fully decentralized approach, which allows to share knowledge between trained models.
Students are trained on the output of their teachers via synthetically generated input data.
The results show that an untrained student model, trained on the teachers output reaches comparable F1-scores as the teacher.
arXiv Detail & Related papers (2021-02-01T14:38:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.