Encapsulating Knowledge in One Prompt
- URL: http://arxiv.org/abs/2407.11902v1
- Date: Tue, 16 Jul 2024 16:35:23 GMT
- Title: Encapsulating Knowledge in One Prompt
- Authors: Qi Li, Runpeng Yu, Xinchao Wang,
- Abstract summary: KiOP encapsulates knowledge from various models into a solitary prompt without altering the original models or requiring access to the training data.
From a practicality standpoint, this paradigm proves the effectiveness of Visual Prompt in data inaccessible contexts.
Experiments across various datasets and models demonstrate the efficacy of the proposed KiOP knowledge transfer paradigm.
- Score: 56.31088116526825
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paradigm encapsulates knowledge from various models into a solitary prompt without altering the original models or requiring access to the training data, which enables us to achieve efficient and convenient knowledge transfer in more realistic scenarios. From a practicality standpoint, this paradigm not only for the first time proves the effectiveness of Visual Prompt in data inaccessible contexts, but also solves the problems of low model reusability and high storage resource consumption faced by traditional Data-Free Knowledge Transfer, which means that we can realize the parallel knowledge transfer of multiple models without modifying any source model. Extensive experiments across various datasets and models demonstrate the efficacy of the proposed KiOP knowledge transfer paradigm. Without access to real training data and with rigorous storage capacity constraints, it is also capable of yielding considerable outcomes when dealing with cross-model backbone setups and handling parallel knowledge transfer processing requests with multiple (more than 2) models.
Related papers
- Cross-Modal Few-Shot Learning: a Generative Transfer Learning Framework [58.362064122489166]
This paper introduces the Cross-modal Few-Shot Learning task, which aims to recognize instances from multiple modalities when only a few labeled examples are available.
We propose a Generative Transfer Learning framework consisting of two stages: the first involves training on abundant unimodal data, and the second focuses on transfer learning to adapt to novel data.
Our finds demonstrate that GTL has superior performance compared to state-of-the-art methods across four distinct multi-modal datasets.
arXiv Detail & Related papers (2024-10-14T16:09:38Z) - MergeNet: Knowledge Migration across Heterogeneous Models, Tasks, and Modalities [72.68829963458408]
We present MergeNet, which learns to bridge the gap of parameter spaces of heterogeneous models.
The core mechanism of MergeNet lies in the parameter adapter, which operates by querying the source model's low-rank parameters.
MergeNet is learned alongside both models, allowing our framework to dynamically transfer and adapt knowledge relevant to the current stage.
arXiv Detail & Related papers (2024-04-20T08:34:39Z) - Borrowing Treasures from Neighbors: In-Context Learning for Multimodal Learning with Missing Modalities and Data Scarcity [9.811378971225727]
This paper extends the current research into missing modalities to the low-data regime.
It is often expensive to get full-modality data and sufficient annotated training samples.
We propose to use retrieval-augmented in-context learning to address these two crucial issues.
arXiv Detail & Related papers (2024-03-14T14:19:48Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - Fantastic Gains and Where to Find Them: On the Existence and Prospect of
General Knowledge Transfer between Any Pretrained Model [74.62272538148245]
We show that for arbitrary pairings of pretrained models, one model extracts significant data context unavailable in the other.
We investigate if it is possible to transfer such "complementary" knowledge from one model to another without performance degradation.
arXiv Detail & Related papers (2023-10-26T17:59:46Z) - Progressive reduced order modeling: empowering data-driven modeling with
selective knowledge transfer [0.0]
We propose a progressive reduced order modeling framework that minimizes data cravings and enhances data-driven modeling's practicality.
Our approach selectively transfers knowledge from previously trained models through gates, similar to how humans selectively use valuable knowledge while ignoring unuseful information.
We have tested our framework in several cases, including transport in porous media, gravity-driven flow, and finite deformation in hyperelastic materials.
arXiv Detail & Related papers (2023-10-04T23:50:14Z) - Probing transfer learning with a model of synthetic correlated datasets [11.53207294639557]
Transfer learning can significantly improve the sample efficiency of neural networks.
We re-think a solvable model of synthetic data as a framework for modeling correlation between data-sets.
We show that our model can capture a range of salient features of transfer learning with real data.
arXiv Detail & Related papers (2021-06-09T22:15:41Z) - Relating by Contrasting: A Data-efficient Framework for Multimodal
Generative Models [86.9292779620645]
We develop a contrastive framework for generative model learning, allowing us to train the model not just by the commonality between modalities, but by the distinction between "related" and "unrelated" multimodal data.
Under our proposed framework, the generative model can accurately identify related samples from unrelated ones, making it possible to make use of the plentiful unlabeled, unpaired multimodal data.
arXiv Detail & Related papers (2020-07-02T15:08:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.