MolReasoner: Toward Effective and Interpretable Reasoning for Molecular LLMs
- URL: http://arxiv.org/abs/2508.02066v1
- Date: Mon, 04 Aug 2025 05:10:11 GMT
- Title: MolReasoner: Toward Effective and Interpretable Reasoning for Molecular LLMs
- Authors: Guojiang Zhao, Sihang Li, Zixiang Lu, Zheng Cheng, Haitao Lin, Lirong Wu, Hanchen Xia, Hengxing Cai, Wentao Guo, Hongshuai Wang, Mingjun Xu, Siyu Zhu, Guolin Ke, Linfeng Zhang, Zhifeng Gao,
- Abstract summary: MolReasoner is a two-stage framework designed to transition Large Language Models from memorization towards chemical reasoning.<n>First, we propose Mol-SFT, which initializes the model's reasoning abilities via synthetic Chain-of-Thought(CoT) samples generated by GPT-4o and verified for chemical accuracy.<n>Subsequently, Mol-RL applies reinforcement learning with specialized reward functions designed explicitly to align chemical structures with linguistic descriptions.
- Score: 30.030008221150407
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models(LLMs) have demonstrated remarkable performance across various domains, yet their capabilities in molecular reasoning remain insufficiently explored. Current approaches tend to rely heavily on general-purpose prompting, which lacks domain-specific molecular semantics, while those that use fine-tuning strategies often face challenges with interpretability and reasoning depth. To address these issues, we introduce MolReasoner, a two-stage framework designed to transition LLMs from memorization towards chemical reasoning. First, we propose Mol-SFT, which initializes the model's reasoning abilities via synthetic Chain-of-Thought(CoT) samples generated by GPT-4o and verified for chemical accuracy. Subsequently, Mol-RL applies reinforcement learning with specialized reward functions designed explicitly to align chemical structures with linguistic descriptions, thereby enhancing molecular reasoning capabilities. Our approach notably enhances interpretability, improving the model 's molecular understanding and enabling better generalization. Extensive experiments demonstrate that MolReasoner outperforms existing methods, and marking a significant shift from memorization-based outputs to robust chemical reasoning.
Related papers
- ChemDFM-R: An Chemical Reasoner LLM Enhanced with Atomized Chemical Knowledge [14.6026550444088]
This work focuses on the specific field of chemistry and develop a Chemical Reasoner LLM, ChemDFM-R.<n>We first construct a comprehensive dataset of atomized knowledge points to enhance the model's understanding of the fundamental principles and logical structure of chemistry.<n> Experiments on diverse chemical benchmarks demonstrate that ChemDFM-R achieves cutting-edge performance while providing interpretable, rationale-driven outputs.
arXiv Detail & Related papers (2025-07-29T16:40:49Z) - Boosting LLM's Molecular Structure Elucidation with Knowledge Enhanced Tree Search Reasoning [35.02138874108029]
Large language models (LLMs) have shown remarkable proficiency in analyzing and reasoning through complex tasks.<n>We introduce a Knowledge-enhanced reasoning framework for Molecular Structure Elucidation (K-MSE), leveraging Monte Carlo Tree Search for test-time scaling as a plugin.<n> Experimental results show that our approach significantly boosts performance, particularly gaining more than 20% improvement on both GPT-4o-mini and GPT-4o.
arXiv Detail & Related papers (2025-06-29T02:00:38Z) - Mol-LLaMA: Towards General Understanding of Molecules in Large Molecular Language Model [55.87790704067848]
Mol-LLaMA is a large molecular language model that grasps the general knowledge centered on molecules.<n>To improve molecular understanding, we propose a module that integrates complementary information from different molecular encoders.
arXiv Detail & Related papers (2025-02-19T05:49:10Z) - Mol-LLM: Multimodal Generalist Molecular LLM with Improved Graph Utilization [8.846705148987652]
We introduce Mol-LLM, the first multimodal generalist model that handles a broad spectrum of molecular tasks.<n> Mol-LLM attains state-of-the-art or comparable results across the most comprehensive molecular-LLM benchmark.
arXiv Detail & Related papers (2025-02-05T01:14:12Z) - FARM: Functional Group-Aware Representations for Small Molecules [55.281754551202326]
We introduce Functional Group-Aware Representations for Small Molecules (FARM)<n>FARM is a novel model designed to bridge the gap between SMILES, natural language, and molecular graphs.<n>We evaluate FARM on the MoleculeNet dataset, where it achieves state-of-the-art performance on 11 out of 13 tasks.
arXiv Detail & Related papers (2024-10-02T23:04:58Z) - Many-Shot In-Context Learning for Molecular Inverse Design [56.65345962071059]
Large Language Models (LLMs) have demonstrated great performance in few-shot In-Context Learning (ICL)
We develop a new semi-supervised learning method that overcomes the lack of experimental data available for many-shot ICL.
As we show, the new method greatly improves upon existing ICL methods for molecular design while being accessible and easy to use for scientists.
arXiv Detail & Related papers (2024-07-26T21:10:50Z) - MolTRES: Improving Chemical Language Representation Learning for Molecular Property Prediction [14.353313239109337]
MolTRES is a novel chemical language representation learning framework.
It incorporates generator-discriminator training, allowing the model to learn from more challenging examples.
Our model outperforms existing state-of-the-art models on popular molecular property prediction tasks.
arXiv Detail & Related papers (2024-07-09T01:14:28Z) - Empowering Molecule Discovery for Molecule-Caption Translation with Large Language Models: A ChatGPT Perspective [53.300288393173204]
Large Language Models (LLMs) have shown remarkable performance in various cross-modal tasks.
In this work, we propose an In-context Few-Shot Molecule Learning paradigm for molecule-caption translation.
We evaluate the effectiveness of MolReGPT on molecule-caption translation, including molecule understanding and text-based molecule generation.
arXiv Detail & Related papers (2023-06-11T08:16:25Z) - Domain-Agnostic Molecular Generation with Chemical Feedback [44.063584808910896]
MolGen is a pre-trained molecular language model tailored specifically for molecule generation.
It internalizes structural and grammatical insights through the reconstruction of over 100 million molecular SELFIES.
Our chemical feedback paradigm steers the model away from molecular hallucinations, ensuring alignment between the model's estimated probabilities and real-world chemical preferences.
arXiv Detail & Related papers (2023-01-26T17:52:56Z) - MolCPT: Molecule Continuous Prompt Tuning to Generalize Molecular
Representation Learning [77.31492888819935]
We propose a novel paradigm of "pre-train, prompt, fine-tune" for molecular representation learning, named molecule continuous prompt tuning (MolCPT)
MolCPT defines a motif prompting function that uses the pre-trained model to project the standalone input into an expressive prompt.
Experiments on several benchmark datasets show that MolCPT efficiently generalizes pre-trained GNNs for molecular property prediction.
arXiv Detail & Related papers (2022-12-20T19:32:30Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
We propose a molecular multimodal foundation model which is pretrained from molecular graphs and their semantically related textual data.
We believe that our model would have a broad impact on AI-empowered fields across disciplines such as biology, chemistry, materials, environment, and medicine.
arXiv Detail & Related papers (2022-09-12T00:56:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.