SpikeSTAG: Spatial-Temporal Forecasting via GNN-SNN Collaboration
- URL: http://arxiv.org/abs/2508.02069v1
- Date: Mon, 04 Aug 2025 05:17:52 GMT
- Title: SpikeSTAG: Spatial-Temporal Forecasting via GNN-SNN Collaboration
- Authors: Bang Hu, Changze Lv, Mingjie Li, Yunpeng Liu, Xiaoqing Zheng, Fengzhe Zhang, Wei cao, Fan Zhang,
- Abstract summary: Spiking neural networks (SNNs) offer a distinctive approach for capturing the complexities of temporal data.<n>We introduce a brand new SNN architecture, which is among the first to seamlessly integrate graph structural learning with spike-based temporal processing.<n> Experiments show that our model surpasses the state-of-the-art SNN-based iSpikformer on all datasets.
- Score: 16.754715227269525
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking neural networks (SNNs), inspired by the spiking behavior of biological neurons, offer a distinctive approach for capturing the complexities of temporal data. However, their potential for spatial modeling in multivariate time-series forecasting remains largely unexplored. To bridge this gap, we introduce a brand new SNN architecture, which is among the first to seamlessly integrate graph structural learning with spike-based temporal processing for multivariate time-series forecasting. Specifically, we first embed time features and an adaptive matrix, eliminating the need for predefined graph structures. We then further learn sequence features through the Observation (OBS) Block. Building upon this, our Multi-Scale Spike Aggregation (MSSA) hierarchically aggregates neighborhood information through spiking SAGE layers, enabling multi-hop feature extraction while eliminating the need for floating-point operations. Finally, we propose a Dual-Path Spike Fusion (DSF) Block to integrate spatial graph features and temporal dynamics via a spike-gated mechanism, combining LSTM-processed sequences with spiking self-attention outputs, effectively improve the model accuracy of long sequence datasets. Experiments show that our model surpasses the state-of-the-art SNN-based iSpikformer on all datasets and outperforms traditional temporal models at long horizons, thereby establishing a new paradigm for efficient spatial-temporal modeling.
Related papers
- TS-LIF: A Temporal Segment Spiking Neuron Network for Time Series Forecasting [27.91825785119938]
Spiking Neural Networks (SNNs) offer a promising, biologically inspired approach for processing data for time series forecasting.<n>We introduce the Temporal Leaky Segment Integrate-and-Fire model, featuring a dual-compartment architecture.<n> Experimental results show that TS-LIF outperforms traditional SNNs in time series forecasting.
arXiv Detail & Related papers (2025-03-07T03:06:21Z) - DyG-Mamba: Continuous State Space Modeling on Dynamic Graphs [59.434893231950205]
Dynamic graph learning aims to uncover evolutionary laws in real-world systems.
We propose DyG-Mamba, a new continuous state space model for dynamic graph learning.
We show that DyG-Mamba achieves state-of-the-art performance on most datasets.
arXiv Detail & Related papers (2024-08-13T15:21:46Z) - P-SpikeSSM: Harnessing Probabilistic Spiking State Space Models for Long-Range Dependency Tasks [1.9775291915550175]
Spiking neural networks (SNNs) are posited as a computationally efficient and biologically plausible alternative to conventional neural architectures.<n>We develop a scalable probabilistic spiking learning framework for long-range dependency tasks.<n>Our models attain state-of-the-art performance among SNN models across diverse long-range dependency tasks.
arXiv Detail & Related papers (2024-06-05T04:23:11Z) - Multi-Scale Spatial-Temporal Self-Attention Graph Convolutional Networks for Skeleton-based Action Recognition [0.0]
In this paper, we propose self-attention GCN hybrid model, Multi-Scale Spatial-Temporal self-attention (MSST)-GCN.
We utilize spatial self-attention module with adaptive topology to understand intra-frame interactions within a frame among different body parts, and temporal self-attention module to examine correlations between frames of a node.
arXiv Detail & Related papers (2024-04-03T10:25:45Z) - RPMixer: Shaking Up Time Series Forecasting with Random Projections for Large Spatial-Temporal Data [33.0546525587517]
We propose a all-Multi-Layer Perceptron (all-MLP) time series forecasting architecture called RPMixer.
Our method capitalizes on the ensemble-like behavior of deep neural networks, where each individual block behaves like a base learner in an ensemble model.
arXiv Detail & Related papers (2024-02-16T07:28:59Z) - Efficient and Effective Time-Series Forecasting with Spiking Neural Networks [47.371024581669516]
Spiking neural networks (SNNs) provide a unique pathway for capturing the intricacies of temporal data.
Applying SNNs to time-series forecasting is challenging due to difficulties in effective temporal alignment, complexities in encoding processes, and the absence of standardized guidelines for model selection.
We propose a framework for SNNs in time-series forecasting tasks, leveraging the efficiency of spiking neurons in processing temporal information.
arXiv Detail & Related papers (2024-02-02T16:23:50Z) - Enhancing Adaptive History Reserving by Spiking Convolutional Block
Attention Module in Recurrent Neural Networks [21.509659756334802]
Spiking neural networks (SNNs) serve as one type of efficient model to processtemporal-temporal patterns in time series.
In this paper, we develop a recurrent spiking neural network (RSNN) model embedded with an advanced spiking convolutional attention module (SCBAM) component.
It invokes the history information in spatial and temporal channels adaptively through SCBAM which brings the advantages of efficient memory calling history and redundancy elimination.
arXiv Detail & Related papers (2024-01-08T08:05:34Z) - Contextualizing MLP-Mixers Spatiotemporally for Urban Data Forecast at Scale [54.15522908057831]
We propose an adapted version of the computationally-Mixer for STTD forecast at scale.
Our results surprisingly show that this simple-yeteffective solution can rival SOTA baselines when tested on several traffic benchmarks.
Our findings contribute to the exploration of simple-yet-effective models for real-world STTD forecasting.
arXiv Detail & Related papers (2023-07-04T05:19:19Z) - Disentangling Structured Components: Towards Adaptive, Interpretable and
Scalable Time Series Forecasting [52.47493322446537]
We develop a adaptive, interpretable and scalable forecasting framework, which seeks to individually model each component of the spatial-temporal patterns.
SCNN works with a pre-defined generative process of MTS, which arithmetically characterizes the latent structure of the spatial-temporal patterns.
Extensive experiments are conducted to demonstrate that SCNN can achieve superior performance over state-of-the-art models on three real-world datasets.
arXiv Detail & Related papers (2023-05-22T13:39:44Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z) - On the spatial attention in Spatio-Temporal Graph Convolutional Networks
for skeleton-based human action recognition [97.14064057840089]
Graphal networks (GCNs) promising performance in skeleton-based human action recognition by modeling a sequence of skeletons as a graph.
Most of the recently proposed G-temporal-based methods improve the performance by learning the graph structure at each layer of the network.
arXiv Detail & Related papers (2020-11-07T19:03:04Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
We propose a higher-order LSTM model that can efficiently learn long-term correlations in the video sequence.
This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time.
Our results achieve state-of-the-art performance-art in a wide range of applications and datasets.
arXiv Detail & Related papers (2020-02-21T05:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.