論文の概要: Instance-Dependent Continuous-Time Reinforcement Learning via Maximum Likelihood Estimation
- arxiv url: http://arxiv.org/abs/2508.02103v1
- Date: Mon, 04 Aug 2025 06:25:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 18:25:22.202319
- Title: Instance-Dependent Continuous-Time Reinforcement Learning via Maximum Likelihood Estimation
- Title(参考訳): 最大近似推定によるインスタンス依存型連続時間強化学習
- Authors: Runze Zhao, Yue Yu, Ruhan Wang, Chunfeng Huang, Dongruo Zhou,
- Abstract要約: 連続時間強化学習(CTRL)は、動的環境におけるシーケンシャルな意思決定のための自然な枠組みを提供する。
経験的成功の度合いは高まっているが、様々なレベルの問題に適応する能力はいまだに理解されていない。
本研究では,最大推定値に基づいて構築されたモデルに基づく簡易アルゴリズムのインスタンス依存挙動について検討する。
- 参考スコア(独自算出の注目度): 27.232790785138427
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Continuous-time reinforcement learning (CTRL) provides a natural framework for sequential decision-making in dynamic environments where interactions evolve continuously over time. While CTRL has shown growing empirical success, its ability to adapt to varying levels of problem difficulty remains poorly understood. In this work, we investigate the instance-dependent behavior of CTRL and introduce a simple, model-based algorithm built on maximum likelihood estimation (MLE) with a general function approximator. Unlike existing approaches that estimate system dynamics directly, our method estimates the state marginal density to guide learning. We establish instance-dependent performance guarantees by deriving a regret bound that scales with the total reward variance and measurement resolution. Notably, the regret becomes independent of the specific measurement strategy when the observation frequency adapts appropriately to the problem's complexity. To further improve performance, our algorithm incorporates a randomized measurement schedule that enhances sample efficiency without increasing measurement cost. These results highlight a new direction for designing CTRL algorithms that automatically adjust their learning behavior based on the underlying difficulty of the environment.
- Abstract(参考訳): 連続時間強化学習(CTRL)は、相互作用が時間とともに継続的に進化する動的環境において、シーケンシャルな意思決定のための自然なフレームワークを提供する。
CTRLは経験的成功を示しているが、様々なレベルの問題に適応する能力はいまだに理解されていない。
本研究では,CTRLのインスタンス依存挙動について検討し,一般関数近似器を用いた最大推定(MLE)に基づくシンプルなモデルベースアルゴリズムを提案する。
システムダイナミクスを直接推定する既存の手法とは異なり、本手法は学習のガイドとなる状態境界密度を推定する。
合計報酬差分と測定値の差分でスケールする後悔境界を導出することにより、インスタンス依存のパフォーマンス保証を確立する。
特に、観察周波数が問題の複雑さに適切に適応すると、後悔は特定の測定戦略とは無関係となる。
性能向上のために,本アルゴリズムでは,測定コストを増大させることなく,サンプル効率を向上させるランダム化計測スケジュールを組み込んだ。
これらの結果は,環境の難易度に基づいて学習行動を自動的に調整するCTRLアルゴリズムを設計するための新たな方向性を浮き彫りにする。
関連論文リスト
- Sample and Computationally Efficient Continuous-Time Reinforcement Learning with General Function Approximation [28.63391989014238]
連続時間強化学習(CTRL)は、相互作用が時間とともに継続的に進化する環境において、シーケンシャルな意思決定のための原則的なフレームワークを提供する。
サンプルと計算効率の両方を実現するモデルベースアルゴリズムを提案する。
我々は,$N$の測定値を用いて,$tildeO(sqrtd_mathcalR + d_mathcalFN-1/2)$の準最適解を求めることができることを示す。
論文 参考訳(メタデータ) (2025-05-20T18:37:51Z) - Overcoming the Curse of Dimensionality in Reinforcement Learning Through Approximate Factorization [15.898378661128334]
強化学習(RL)アルゴリズムは次元性の呪いに苦しむことが知られている。
本稿では,元のマルコフ決定過程(MDP)を,より小さく,独立に進化するMDPに大まかに分解することで,次元性の呪いを克服することを提案する。
提案手法は,両アルゴリズムに改良された複雑性保証を提供する。
論文 参考訳(メタデータ) (2024-11-12T07:08:00Z) - Reinforcement Learning under Latent Dynamics: Toward Statistical and Algorithmic Modularity [51.40558987254471]
強化学習の現実的な応用は、エージェントが複雑な高次元の観察を行う環境を含むことが多い。
本稿では,統計的・アルゴリズム的な観点から,textit General$ latent dynamicsの下での強化学習の課題に対処する。
論文 参考訳(メタデータ) (2024-10-23T14:22:49Z) - Fast Value Tracking for Deep Reinforcement Learning [7.648784748888187]
強化学習(Reinforcement Learning, RL)は、環境と対話するエージェントを作成することによって、シーケンシャルな意思決定問題に取り組む。
既存のアルゴリズムはしばしばこれらの問題を静的とみなし、期待される報酬を最大化するためにモデルパラメータの点推定に重点を置いている。
我々の研究は、カルマンパラダイムを活用して、Langevinized Kalman TemporalTDと呼ばれる新しい定量化およびサンプリングアルゴリズムを導入する。
論文 参考訳(メタデータ) (2024-03-19T22:18:19Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
強化学習における3つの大きな課題は、大きな状態空間を持つ複雑な力学系、コストのかかるデータ取得プロセス、トレーニング環境の展開から現実の力学を逸脱させることである。
広範に用いられているKullback-Leibler, chi-square, および全変分不確実性集合の下で, 連続状態空間を持つ分布ロバストなマルコフ決定過程について検討した。
本稿では,ガウス過程と最大分散削減アルゴリズムを用いて,多出力名目遷移力学を効率的に学習するモデルベースアプローチを提案する。
論文 参考訳(メタデータ) (2023-09-05T13:42:11Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - GEC: A Unified Framework for Interactive Decision Making in MDP, POMDP,
and Beyond [101.5329678997916]
対話型意思決定の一般的な枠組みの下で, サンプル高能率強化学習(RL)について検討した。
本稿では,探索とエクスプロイトの基本的なトレードオフを特徴付ける,新しい複雑性尺度である一般化エルダー係数(GEC)を提案する。
低 GEC の RL 問題は非常にリッチなクラスであり、これは低ベルマン楕円体次元問題、双線型クラス、低証人ランク問題、PO-双線型クラス、一般化正規PSR を仮定する。
論文 参考訳(メタデータ) (2022-11-03T16:42:40Z) - Stabilizing Q-learning with Linear Architectures for Provably Efficient
Learning [53.17258888552998]
本研究では,線形関数近似を用いた基本的な$Q$-learningプロトコルの探索変種を提案する。
このアルゴリズムの性能は,新しい近似誤差というより寛容な概念の下で,非常に優雅に低下することを示す。
論文 参考訳(メタデータ) (2022-06-01T23:26:51Z) - Data Augmentation through Expert-guided Symmetry Detection to Improve
Performance in Offline Reinforcement Learning [0.0]
マルコフ決定過程(MDP)の動的モデルのオフライン推定は非自明な作業である。
近年の研究では、密度推定法に依存する専門家誘導パイプラインが、決定論的環境において、この構造を効果的に検出できることが示されている。
学習したMDPを解き、実際の環境に最適化されたポリシーを適用すると、前者の結果が性能改善につながることを示す。
論文 参考訳(メタデータ) (2021-12-18T14:32:32Z) - Minimum-Delay Adaptation in Non-Stationary Reinforcement Learning via
Online High-Confidence Change-Point Detection [7.685002911021767]
非定常環境におけるポリシーを効率的に学習するアルゴリズムを導入する。
これは、リアルタイム、高信頼な変更点検出統計において、潜在的に無限のデータストリームと計算を解析する。
i) このアルゴリズムは, 予期せぬ状況変化が検出されるまでの遅延を最小限に抑え, 迅速な応答を可能にする。
論文 参考訳(メタデータ) (2021-05-20T01:57:52Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
観察ifoからの模倣学習において、学習エージェントは、実演者の生成した制御信号にアクセスせずに、実演行動の観察のみを用いて実演エージェントを模倣しようとする。
近年、逆模倣学習に基づく手法は、ifO問題に対する最先端のパフォーマンスをもたらすが、データ非効率でモデルなしの強化学習アルゴリズムに依存するため、サンプルの複雑さに悩まされることが多い。
この問題は、サンプルの収集が時間、エネルギー、およびリスクの面で高いコストを被る可能性がある現実世界の設定に展開することは非現実的です。
よりデータ効率の高いifOアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-31T23:46:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。