All Stories Are One Story: Emotional Arc Guided Procedural Game Level Generation
- URL: http://arxiv.org/abs/2508.02132v1
- Date: Mon, 04 Aug 2025 07:27:55 GMT
- Title: All Stories Are One Story: Emotional Arc Guided Procedural Game Level Generation
- Authors: Yunge Wen, Chenliang Huang, Hangyu Zhou, Zhuo Zeng, Chun Ming Louis Po, Julian Togelius, Timothy Merino, Sam Earle,
- Abstract summary: We present a framework for procedural game narrative generation that incorporates emotional arcs as a structural backbone.<n>We focus on two core emotional patterns -- Rise and Fall -- to guide the generation of branching story graphs.<n>Our system demonstrates how emotional arcs can be operationalized using large language models and adaptive entity generation.
- Score: 1.8885685625700497
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emotional arc is a universal narrative structure underlying stories across cultures and media -- an idea central to structuralist narratology, often encapsulated in the phrase "all stories are one story." We present a framework for procedural game narrative generation that incorporates emotional arcs as a structural backbone for both story progression and gameplay dynamics. Leveraging established narratological theories and large-scale empirical analyses, we focus on two core emotional patterns -- Rise and Fall -- to guide the generation of branching story graphs. Each story node is automatically populated with characters, items, and gameplay-relevant attributes (e.g., health, attack), with difficulty adjusted according to the emotional trajectory. Implemented in a prototype action role-playing game (ARPG), our system demonstrates how emotional arcs can be operationalized using large language models (LLMs) and adaptive entity generation. Evaluation through player ratings, interviews, and sentiment analysis shows that emotional arc integration significantly enhances engagement, narrative coherence, and emotional impact. These results highlight the potential of emotionally structured procedural generation for advancing interactive storytelling for games.
Related papers
- Aether Weaver: Multimodal Affective Narrative Co-Generation with Dynamic Scene Graphs [0.8702432681310401]
Aether Weaver is a novel framework for narrative co-generation that overcomes limitations of multimodal text-to-visual pipelines.<n>Our system concurrently synthesizes textual narratives, dynamic scene graph representations, visual scenes, and affective soundscapes.
arXiv Detail & Related papers (2025-07-29T15:01:31Z) - STORYTELLER: An Enhanced Plot-Planning Framework for Coherent and Cohesive Story Generation [17.553025200797986]
We introduce Storyteller, a novel approach that systemically improves the coherence and consistency of automatically generated stories.<n>In experiments, Storyteller significantly outperforms existing approaches, achieving an 84.33% average win rate.<n>At the same time, it is also far ahead in other aspects including creativity, coherence, engagement, and relevance.
arXiv Detail & Related papers (2025-06-03T00:54:00Z) - Action2Dialogue: Generating Character-Centric Narratives from Scene-Level Prompts [20.281732318265483]
We present a modular pipeline that transforms action-level prompts into visually and auditorily grounded narrative dialogue.<n>Our method takes as input a pair of prompts per scene, where the first defines the setting and the second specifies a character's behavior.<n>We render each utterance as expressive, character-conditioned speech, resulting in fully-voiced, multimodal video narratives.
arXiv Detail & Related papers (2025-05-22T15:54:42Z) - Collaborative Storytelling and LLM: A Linguistic Analysis of Automatically-Generated Role-Playing Game Sessions [55.2480439325792]
Role-playing games (RPG) are games in which players interact with one another to create narratives.<n>This emerging form of shared narrative, primarily oral, is receiving increasing attention.<n>In this paper, we aim to discover to what extent the language of Large Language Models (LLMs) exhibit oral or written features when asked to generate an RPG session.
arXiv Detail & Related papers (2025-03-26T15:10:47Z) - Towards Enhanced Immersion and Agency for LLM-based Interactive Drama [55.770617779283064]
This paper begins with understanding interactive drama from two aspects: Immersion, the player's feeling of being present in the story, and Agency.<n>To enhance these two aspects, we first propose Playwriting-guided Generation, a novel method that helps LLMs craft dramatic stories with substantially improved structures and narrative quality.
arXiv Detail & Related papers (2025-02-25T06:06:16Z) - Generating Visual Stories with Grounded and Coreferent Characters [63.07511918366848]
We present the first model capable of predicting visual stories with consistently grounded and coreferent character mentions.<n>Our model is finetuned on a new dataset which we build on top of the widely used VIST benchmark.<n>We also propose new evaluation metrics to measure the richness of characters and coreference in stories.
arXiv Detail & Related papers (2024-09-20T14:56:33Z) - Are Large Language Models Capable of Generating Human-Level Narratives? [114.34140090869175]
This paper investigates the capability of LLMs in storytelling, focusing on narrative development and plot progression.
We introduce a novel computational framework to analyze narratives through three discourse-level aspects.
We show that explicit integration of discourse features can enhance storytelling, as is demonstrated by over 40% improvement in neural storytelling.
arXiv Detail & Related papers (2024-07-18T08:02:49Z) - Emotion Rendering for Conversational Speech Synthesis with Heterogeneous
Graph-Based Context Modeling [50.99252242917458]
Conversational Speech Synthesis (CSS) aims to accurately express an utterance with the appropriate prosody and emotional inflection within a conversational setting.
To address the issue of data scarcity, we meticulously create emotional labels in terms of category and intensity.
Our model outperforms the baseline models in understanding and rendering emotions.
arXiv Detail & Related papers (2023-12-19T08:47:50Z) - GENEVA: GENErating and Visualizing branching narratives using LLMs [15.43734266732214]
textbfGENEVA, a prototype tool, generates a rich narrative graph with branching and reconverging storylines.
textbfGENEVA has the potential to assist in game development, simulations, and other applications with game-like properties.
arXiv Detail & Related papers (2023-11-15T18:55:45Z) - ViNTER: Image Narrative Generation with Emotion-Arc-Aware Transformer [59.05857591535986]
We propose a model called ViNTER to generate image narratives that focus on time series representing varying emotions as "emotion arcs"
We present experimental results of both manual and automatic evaluations.
arXiv Detail & Related papers (2022-02-15T10:53:08Z) - Modeling Protagonist Emotions for Emotion-Aware Storytelling [16.09732485225391]
We present the first study on modeling the emotional trajectory of the protagonist in neural storytelling.
Our models include Emotion Supervision (EmoSup) and two Emotion-Reinforced (EmoRL) models.
arXiv Detail & Related papers (2020-10-14T06:24:25Z) - Controllable Multi-Character Psychology-Oriented Story Generation [28.054245616281023]
We present a novel model-based attention mechanism that we call SoCP (Storytelling of multi-Character Psychology)
We show that the proposed model can generate stories considering the changes in the psychological state of different characters.
Experiments show that with SoCP, the generated stories follow the psychological state for each character according to both automatic and human evaluations.
arXiv Detail & Related papers (2020-10-11T12:05:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.