Unified Category-Level Object Detection and Pose Estimation from RGB Images using 3D Prototypes
- URL: http://arxiv.org/abs/2508.02157v1
- Date: Mon, 04 Aug 2025 07:57:39 GMT
- Title: Unified Category-Level Object Detection and Pose Estimation from RGB Images using 3D Prototypes
- Authors: Tom Fischer, Xiaojie Zhang, Eddy Ilg,
- Abstract summary: We introduce a unified model that integrates detection and pose estimation into a single framework for RGB images.<n>Our approach achieves state-of-the-art results for RGB category-level pose estimation on REAL275.
- Score: 5.224479258519442
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recognizing objects in images is a fundamental problem in computer vision. Although detecting objects in 2D images is common, many applications require determining their pose in 3D space. Traditional category-level methods rely on RGB-D inputs, which may not always be available, or employ two-stage approaches that use separate models and representations for detection and pose estimation. For the first time, we introduce a unified model that integrates detection and pose estimation into a single framework for RGB images by leveraging neural mesh models with learned features and multi-model RANSAC. Our approach achieves state-of-the-art results for RGB category-level pose estimation on REAL275, improving on the current state-of-the-art by 22.9% averaged across all scale-agnostic metrics. Finally, we demonstrate that our unified method exhibits greater robustness compared to single-stage baselines. Our code and models are available at https://github.com/Fischer-Tom/unified-detection-and-pose-estimation.
Related papers
- One2Any: One-Reference 6D Pose Estimation for Any Object [98.50085481362808]
6D object pose estimation remains challenging for many applications due to dependencies on complete 3D models, multi-view images, or training limited to specific object categories.<n>We propose a novel method One2Any that estimates the relative 6-degrees of freedom (DOF) object pose using only a single reference-single query RGB-D image.<n> Experiments on multiple benchmark datasets demonstrate that our model generalizes well to novel objects, achieving state-of-the-art accuracy and even rivaling methods that require multi-view or CAD inputs, at a fraction of compute.
arXiv Detail & Related papers (2025-05-07T03:54:59Z) - Towards Human-Level 3D Relative Pose Estimation: Generalizable, Training-Free, with Single Reference [62.99706119370521]
Humans can easily deduce the relative pose of an unseen object, without label/training, given only a single query-reference image pair.
We propose a novel 3D generalizable relative pose estimation method by elaborating (i) with a 2.5D shape from an RGB-D reference, (ii) with an off-the-shelf differentiable, and (iii) with semantic cues from a pretrained model like DINOv2.
arXiv Detail & Related papers (2024-06-26T16:01:10Z) - MatchU: Matching Unseen Objects for 6D Pose Estimation from RGB-D Images [57.71600854525037]
We propose a Fuse-Describe-Match strategy for 6D pose estimation from RGB-D images.
MatchU is a generic approach that fuses 2D texture and 3D geometric cues for 6D pose prediction of unseen objects.
arXiv Detail & Related papers (2024-03-03T14:01:03Z) - FoundPose: Unseen Object Pose Estimation with Foundation Features [11.32559845631345]
FoundPose is a model-based method for 6D pose estimation of unseen objects from a single RGB image.
The method can quickly onboard new objects using their 3D models without requiring any object- or task-specific training.
arXiv Detail & Related papers (2023-11-30T18:52:29Z) - RGB-based Category-level Object Pose Estimation via Decoupled Metric
Scale Recovery [72.13154206106259]
We propose a novel pipeline that decouples the 6D pose and size estimation to mitigate the influence of imperfect scales on rigid transformations.
Specifically, we leverage a pre-trained monocular estimator to extract local geometric information.
A separate branch is designed to directly recover the metric scale of the object based on category-level statistics.
arXiv Detail & Related papers (2023-09-19T02:20:26Z) - MV-ROPE: Multi-view Constraints for Robust Category-level Object Pose and Size Estimation [23.615122326731115]
We propose a novel solution that makes use of RGB video streams.
Our framework consists of three modules: a scale-aware monocular dense SLAM solution, a lightweight object pose predictor, and an object-level pose graph.
Our experimental results demonstrate that when utilizing public dataset sequences with high-quality depth information, the proposed method exhibits comparable performance to state-of-the-art RGB-D methods.
arXiv Detail & Related papers (2023-08-17T08:29:54Z) - Pose Estimation of Specific Rigid Objects [0.7931904787652707]
We address the problem of estimating the 6D pose of rigid objects from a single RGB or RGB-D input image.
This problem is of great importance to many application fields such as robotic manipulation, augmented reality, and autonomous driving.
arXiv Detail & Related papers (2021-12-30T14:36:47Z) - Single-stage Keypoint-based Category-level Object Pose Estimation from
an RGB Image [27.234658117816103]
We propose a single-stage, keypoint-based approach for category-level object pose estimation.
The proposed network performs 2D object detection, detects 2D keypoints, estimates 6-DoF pose, and regresses relative bounding cuboid dimensions.
We conduct extensive experiments on the challenging Objectron benchmark, outperforming state-of-the-art methods on the 3D IoU metric.
arXiv Detail & Related papers (2021-09-13T17:55:00Z) - RGB2Hands: Real-Time Tracking of 3D Hand Interactions from Monocular RGB
Video [76.86512780916827]
We present the first real-time method for motion capture of skeletal pose and 3D surface geometry of hands from a single RGB camera.
In order to address the inherent depth ambiguities in RGB data, we propose a novel multi-task CNN.
We experimentally verify the individual components of our RGB two-hand tracking and 3D reconstruction pipeline.
arXiv Detail & Related papers (2021-06-22T12:53:56Z) - Refer-it-in-RGBD: A Bottom-up Approach for 3D Visual Grounding in RGBD
Images [69.5662419067878]
Grounding referring expressions in RGBD image has been an emerging field.
We present a novel task of 3D visual grounding in single-view RGBD image where the referred objects are often only partially scanned due to occlusion.
Our approach first fuses the language and the visual features at the bottom level to generate a heatmap that localizes the relevant regions in the RGBD image.
Then our approach conducts an adaptive feature learning based on the heatmap and performs the object-level matching with another visio-linguistic fusion to finally ground the referred object.
arXiv Detail & Related papers (2021-03-14T11:18:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.