Whispering Agents: An event-driven covert communication protocol for the Internet of Agents
- URL: http://arxiv.org/abs/2508.02188v1
- Date: Mon, 04 Aug 2025 08:31:56 GMT
- Title: Whispering Agents: An event-driven covert communication protocol for the Internet of Agents
- Authors: Kaibo Huang, Yukun Wei, WanSheng Wu, Tianhua Zhang, Zhongliang Yang, Linna Zhou,
- Abstract summary: We find that the rich, event-driven nature of agent dialogues provides a powerful, yet untapped, medium for covert communication.<n>We introduce and formalize the Covert Event Channel, the first unified model for agent covert communication driven by three interconnected dimensions.<n>Based on this model, we design and engineer PiCCAP, a novel protocol that operationalizes this event-driven paradigm.
- Score: 9.305839815222646
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emergence of the Internet of Agents (IoA) introduces critical challenges for communication privacy in sensitive, high-stakes domains. While standard Agent-to-Agent (A2A) protocols secure message content, they are not designed to protect the act of communication itself, leaving agents vulnerable to surveillance and traffic analysis. We find that the rich, event-driven nature of agent dialogues provides a powerful, yet untapped, medium for covert communication. To harness this potential, we introduce and formalize the Covert Event Channel, the first unified model for agent covert communication driven by three interconnected dimensions, which consist of the Storage, Timing,and Behavioral channels. Based on this model, we design and engineer {\Pi}CCAP, a novel protocol that operationalizes this event-driven paradigm. Our comprehensive evaluation demonstrates that {\Pi}CCAP achieves high capacity and robustness while remaining imperceptible to powerful LLM-based wardens, establishing its practical viability. By systematically engineering this channel, our work provides the foundational understanding essential for developing the next generation of monitoring systems and defensive protocols for a secure and trustworthy IoA.
Related papers
- Agentic Web: Weaving the Next Web with AI Agents [109.13815627467514]
The emergence of AI agents powered by large language models (LLMs) marks a pivotal shift toward the Agentic Web.<n>In this paradigm, agents interact directly with one another to plan, coordinate, and execute complex tasks on behalf of users.<n>We present a structured framework for understanding and building the Agentic Web.
arXiv Detail & Related papers (2025-07-28T17:58:12Z) - From Prompt Injections to Protocol Exploits: Threats in LLM-Powered AI Agents Workflows [1.202155693533555]
Large language models (LLMs) with structured function-calling interfaces have dramatically expanded capabilities for real-time data retrieval and computation.<n>Yet, the explosive proliferation of plugins, connectors, and inter-agent protocols has outpaced discovery mechanisms and security practices.<n>We introduce the first unified, end-to-end threat model for LLM-agent ecosystems, spanning host-to-tool and agent-to-agent communications.
arXiv Detail & Related papers (2025-06-29T14:32:32Z) - A Survey of LLM-Driven AI Agent Communication: Protocols, Security Risks, and Defense Countermeasures [59.43633341497526]
Large-Language-Model-driven AI agents have exhibited unprecedented intelligence and adaptability.<n>Agent communication is regarded as a foundational pillar of the future AI ecosystem.<n>This paper presents a comprehensive survey of agent communication security.
arXiv Detail & Related papers (2025-06-24T14:44:28Z) - A survey of agent interoperability protocols: Model Context Protocol (MCP), Agent Communication Protocol (ACP), Agent-to-Agent Protocol (A2A), and Agent Network Protocol (ANP) [0.8463972278020965]
This survey examines four emerging agent communication protocols: Model Context Protocol (MCP), Agent Communication Protocol (ACP), Agent-to-Agent Protocol (A2A), and Agent Network Protocol (ANP)
arXiv Detail & Related papers (2025-05-04T22:18:27Z) - A Survey of AI Agent Protocols [35.431057321412354]
There is no standard way for large language models (LLMs) agents to communicate with external tools or data sources.<n>This lack of standardized protocols makes it difficult for agents to work together or scale effectively.<n>A unified communication protocol for LLM agents could change this.
arXiv Detail & Related papers (2025-04-23T14:07:26Z) - Secure Physical Layer Communications for Low-Altitude Economy Networking: A Survey [76.36166980302478]
The Low-Altitude Economy Networking (LAENet) is emerging as a transformative paradigm.<n>Physical layer communications in the LAENet face growing security threats due to inherent characteristics of aerial communication environments.<n>This survey comprehensively reviews existing secure countermeasures for physical layer communication in the LAENet.
arXiv Detail & Related papers (2025-04-12T09:36:53Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
Existing multi-agent frameworks often struggle with integrating diverse capable third-party agents.
We propose the Internet of Agents (IoA), a novel framework that addresses these limitations.
IoA introduces an agent integration protocol, an instant-messaging-like architecture design, and dynamic mechanisms for agent teaming and conversation flow control.
arXiv Detail & Related papers (2024-07-09T17:33:24Z) - Certifiably Robust Policy Learning against Adversarial Communication in
Multi-agent Systems [51.6210785955659]
Communication is important in many multi-agent reinforcement learning (MARL) problems for agents to share information and make good decisions.
However, when deploying trained communicative agents in a real-world application where noise and potential attackers exist, the safety of communication-based policies becomes a severe issue that is underexplored.
In this work, we consider an environment with $N$ agents, where the attacker may arbitrarily change the communication from any $CfracN-12$ agents to a victim agent.
arXiv Detail & Related papers (2022-06-21T07:32:18Z) - Adversarial Attacks On Multi-Agent Communication [80.4392160849506]
Modern autonomous systems will soon be deployed at scale, opening up the possibility for cooperative multi-agent systems.
Such advantages rely heavily on communication channels which have been shown to be vulnerable to security breaches.
In this paper, we explore such adversarial attacks in a novel multi-agent setting where agents communicate by sharing learned intermediate representations.
arXiv Detail & Related papers (2021-01-17T00:35:26Z) - Learning Individually Inferred Communication for Multi-Agent Cooperation [37.56115000150748]
We propose Individually Inferred Communication (I2C) to enable agents to learn a prior for agent-agent communication.
The prior knowledge is learned via causal inference and realized by a feed-forward neural network.
I2C can not only reduce communication overhead but also improve the performance in a variety of multi-agent cooperative scenarios.
arXiv Detail & Related papers (2020-06-11T14:07:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.