Balancing Information Accuracy and Response Timeliness in Networked LLMs
- URL: http://arxiv.org/abs/2508.02209v1
- Date: Mon, 04 Aug 2025 09:00:01 GMT
- Title: Balancing Information Accuracy and Response Timeliness in Networked LLMs
- Authors: Yigit Turkmen, Baturalp Buyukates, Melih Bastopcu,
- Abstract summary: Large Language Models (LLMs) have transformed many fields including scientific discovery, content generation, biomedical text mining, and educational technology.<n>A promising alternative is to leverage smaller, specialized language models and aggregate their outputs to improve overall response quality.
- Score: 11.156009461711639
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in Large Language Models (LLMs) have transformed many fields including scientific discovery, content generation, biomedical text mining, and educational technology. However, the substantial requirements for training data, computational resources, and energy consumption pose significant challenges for their practical deployment. A promising alternative is to leverage smaller, specialized language models and aggregate their outputs to improve overall response quality. In this work, we investigate a networked LLM system composed of multiple users, a central task processor, and clusters of topic-specialized LLMs. Each user submits categorical binary (true/false) queries, which are routed by the task processor to a selected cluster of $m$ LLMs. After gathering individual responses, the processor returns a final aggregated answer to the user. We characterize both the information accuracy and response timeliness in this setting, and formulate a joint optimization problem to balance these two competing objectives. Our extensive simulations demonstrate that the aggregated responses consistently achieve higher accuracy than those of individual LLMs. Notably, this improvement is more significant when the participating LLMs exhibit similar standalone performance.
Related papers
- Towards Efficient Multi-LLM Inference: Characterization and Analysis of LLM Routing and Hierarchical Techniques [14.892995952768352]
Language Models (LMs) have excelled at tasks like text generation, summarization, and question answering.<n>Their inference remains computationally expensive and energy intensive in settings with limited hardware, power, or bandwidth.<n>Recent approaches have introduced multi LLM intelligent model selection strategies that dynamically allocate computational resources based on query complexity.
arXiv Detail & Related papers (2025-06-06T23:13:08Z) - Iterative Self-Incentivization Empowers Large Language Models as Agentic Searchers [74.17516978246152]
Large language models (LLMs) have been widely integrated into information retrieval to advance traditional techniques.<n>We propose EXSEARCH, an agentic search framework, where the LLM learns to retrieve useful information as the reasoning unfolds.<n>Experiments on four knowledge-intensive benchmarks show that EXSEARCH substantially outperforms baselines.
arXiv Detail & Related papers (2025-05-26T15:27:55Z) - Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.<n>However, they still struggle with problems requiring multi-step decision-making and environmental feedback.<n>We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - MixLLM: Dynamic Routing in Mixed Large Language Models [57.309520357563215]
Large Language Models (LLMs) exhibit potential artificial generic intelligence recently, however, their usage is costly with high response latency.<n>We develop MixLLM, a dynamic contextual-bandit-based routing system for query-LLM assignment.
arXiv Detail & Related papers (2025-02-09T02:26:15Z) - PickLLM: Context-Aware RL-Assisted Large Language Model Routing [0.5325390073522079]
PickLLM is a lightweight framework that relies on Reinforcement Learning (RL) to route on-the-fly queries to available models.<n>We demonstrate the speed of convergence for different learning rates and improvement in hard metrics such as cost per querying session and overall response latency.
arXiv Detail & Related papers (2024-12-12T06:27:12Z) - Fact, Fetch, and Reason: A Unified Evaluation of Retrieval-Augmented Generation [19.312330150540912]
An emerging application is using Large Language Models (LLMs) to enhance retrieval-augmented generation (RAG) capabilities.<n>We propose FRAMES, a high-quality evaluation dataset designed to test LLMs' ability to provide factual responses.<n>We present baseline results demonstrating that even state-of-the-art LLMs struggle with this task, achieving 0.40 accuracy with no retrieval.
arXiv Detail & Related papers (2024-09-19T17:52:07Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
Long-context language models (LCLMs) have the potential to revolutionize our approach to tasks traditionally reliant on external tools like retrieval systems or databases.
We introduce LOFT, a benchmark of real-world tasks requiring context up to millions of tokens designed to evaluate LCLMs' performance on in-context retrieval and reasoning.
Our findings reveal LCLMs' surprising ability to rival state-of-the-art retrieval and RAG systems, despite never having been explicitly trained for these tasks.
arXiv Detail & Related papers (2024-06-19T00:28:58Z) - Enhancing Large Language Model Performance To Answer Questions and
Extract Information More Accurately [2.1715455600756646]
Large Language Models (LLMs) generate responses to questions.
Their effectiveness is often hindered by sub-optimal quality of answers and occasional failures to provide accurate responses to questions.
To address these challenges, a fine-tuning process is employed, involving feedback and examples to refine models.
arXiv Detail & Related papers (2024-01-27T00:18:07Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
Large language models (LLMs) are able to generate human-like, fluent responses for many downstream tasks.
This paper proposes a LLM-Augmenter system, which augments a black-box LLM with a set of plug-and-play modules.
arXiv Detail & Related papers (2023-02-24T18:48:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.