論文の概要: Isolating Culture Neurons in Multilingual Large Language Models
- arxiv url: http://arxiv.org/abs/2508.02241v1
- Date: Mon, 04 Aug 2025 09:41:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 18:25:22.275688
- Title: Isolating Culture Neurons in Multilingual Large Language Models
- Title(参考訳): 多言語大言語モデルにおける培養ニューロンの分離
- Authors: Danial Namazifard, Lukas Galke,
- Abstract要約: 言語特異的ニューロンを同定し、それを培養特異的ニューロンの局在化と分離に拡張する。
実験を容易にするために、6つの文化にまたがる8520万のトークンからなるキュレートデータセットであるMURELを紹介した。
我々の局所化と介入実験は、LLMが神経集団の異なる文化をコードしていることを示している。
- 参考スコア(独自算出の注目度): 4.14360329494344
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Language and culture are deeply intertwined, yet it is so far unclear how and where multilingual large language models encode culture. Here, we extend upon an established methodology for identifying language-specific neurons and extend it to localize and isolate culture-specific neurons, carefully disentangling their overlap and interaction with language-specific neurons. To facilitate our experiments, we introduce MUREL, a curated dataset of 85.2 million tokens spanning six different cultures. Our localization and intervention experiments show that LLMs encode different cultures in distinct neuron populations, predominantly in upper layers, and that these culture neurons can be modulated independently from language-specific neurons or those specific to other cultures. These findings suggest that cultural knowledge and propensities in multilingual language models can be selectively isolated and edited - promoting fairness, inclusivity, and alignment. Code and data is available at https://github.com/namazifard/Culture_Neurons .
- Abstract(参考訳): 言語と文化は深く絡み合っているが、多言語の大きな言語モデルがどのように文化をエンコードしているのかは今のところ不明である。
ここでは,言語特異的ニューロンを同定し,それを局所化し,培養特異的ニューロンを分離するために拡張する確立された手法を拡張し,その重複と言語特異的ニューロンとの相互作用を慎重に解消する。
実験を容易にするために、6つの文化にまたがる8520万のトークンからなるキュレートデータセットであるMURELを紹介した。
我々の局所化と介入実験により、LSMは、主に上層にある異なる神経細胞集団の異なる培養をコードし、これらの培養ニューロンは言語固有のニューロンや他の培養細胞と独立して調節可能であることが示されている。
これらの結果は、多言語モデルにおける文化的知識と妥当性を選択的に分離し、編集し、公正さ、傾き、アライメントを促進することができることを示唆している。
コードとデータはhttps://github.com/namazifard/Culture_Neuronsで公開されている。
関連論文リスト
- How does Alignment Enhance LLMs' Multilingual Capabilities? A Language Neurons Perspective [64.79894853375478]
本稿では,言語ニューロン(言語特異的ニューロンや言語関連ニューロンを含む)と言語非依存ニューロンを検出する,より微細なニューロン識別アルゴリズムを提案する。
異なる種類のニューロンの分布特性に基づいて、多言語推論のためのLCMの内部過程を4つの部分に分割する。
我々は、異なる種類のニューロンに焦点を合わせ、その前後のモデルを体系的に分析する。
論文 参考訳(メタデータ) (2025-05-27T17:59:52Z) - Sharing Matters: Analysing Neurons Across Languages and Tasks in LLMs [70.3132264719438]
我々は,タスクや言語間でニューロンの活性化がどのように共有されるかを調べることで,研究ギャップを埋めることを目指している。
我々は、異なる言語にまたがる特定の入力に対する応答に基づいて、ニューロンを4つの異なるカテゴリに分類する。
分析の結果, (i) ニューロン共有のパターンはタスクや例の特徴に大きく影響され, (ii) ニューロン共有は言語類似性に完全には対応しない, (iii) 共有ニューロンは応答の生成において重要な役割を担っている。
論文 参考訳(メタデータ) (2024-06-13T16:04:11Z) - The Echoes of Multilinguality: Tracing Cultural Value Shifts during LM Fine-tuning [23.418656688405605]
本研究では, 異なるテスト言語で符号化された文化的価値に言語がどのように影響するかを, 微調整時にどのように修正されるかを検討する。
最後に、トレーニングデータ属性法を用いて、微調整の例やそれらが生み出す言語にパターンを見つける。
論文 参考訳(メタデータ) (2024-05-21T12:55:15Z) - CULTURE-GEN: Revealing Global Cultural Perception in Language Models through Natural Language Prompting [73.94059188347582]
110か国・地域での3つのSOTAモデルの文化認識を,文化条件付き世代を通して8つの文化関連トピックについて明らかにした。
文化条件付き世代は、デフォルトの文化と区別される余分な文化を区別する言語的な「マーカー」から成り立っていることが判明した。
論文 参考訳(メタデータ) (2024-04-16T00:50:43Z) - On the Multilingual Ability of Decoder-based Pre-trained Language Models: Finding and Controlling Language-Specific Neurons [37.32174349956148]
多言語デコーダを用いた言語モデル(PLM)のニューロンレベルの内部挙動の解析
言語固有のニューロンは、言語間でわずかに重なり(5%)、ユニークであることを示す。
推論中に各モデルにおける全ニューロンの1%未満をタンパし、少数の言語特異的ニューロンとのタンパリングがテキスト生成におけるターゲット言語発生の確率を劇的に変化させることを実証した。
論文 参考訳(メタデータ) (2024-04-03T03:37:22Z) - Revealing the Parallel Multilingual Learning within Large Language Models [50.098518799536144]
本研究では,多言語大言語モデル(LLM)の文脈内学習能力を明らかにする。
入力を複数の言語に翻訳することで、並列入力(PiM)をLLMに提供し、その理解能力を大幅に向上させる。
論文 参考訳(メタデータ) (2024-03-14T03:33:46Z) - How do Large Language Models Handle Multilingualism? [81.15060972112563]
本研究では,大規模言語モデル(LLM)が多言語モデルをどのように扱うかを検討する。
LLMはまずクエリを理解し、タスク解決のために多言語入力を英語に変換する。
中間層では、英語を思考に用い、自己意識とフィードフォワード構造を持つ多言語知識を取り入れている。
論文 参考訳(メタデータ) (2024-02-29T02:55:26Z) - Investigating Cultural Alignment of Large Language Models [10.738300803676655]
LLM(Large Language Models)は,異なる文化で採用されている多様な知識を真にカプセル化していることを示す。
社会学的調査をシミュレートし、実際の調査参加者のモデル応答を参考として、文化的アライメントの定量化を行う。
本稿では,人類学的推論を活用し,文化的アライメントを高める新しい手法である人類学的プロンプティングを紹介する。
論文 参考訳(メタデータ) (2024-02-20T18:47:28Z) - Multi-lingual and Multi-cultural Figurative Language Understanding [69.47641938200817]
図形言語は人間のコミュニケーションに浸透するが、NLPでは比較的過小評価されている。
Hindi, Indonesian, Javanese, Kannada, Sundanese, Swahili, Yorubaの7つの多様な言語に関するデータセットを作成しました。
我々のデータセットから,各言語は,同じ領域から派生した言語間で最も高い重なり合いを持つ,図形表現の文化的・地域的概念に依存していることが明らかとなった。
全ての言語は、事前学習データと微調整データの可用性を反映した性能の変化により、英語と比較して大きな欠陥がある。
論文 参考訳(メタデータ) (2023-05-25T15:30:31Z) - Same Neurons, Different Languages: Probing Morphosyntax in Multilingual
Pre-trained Models [84.86942006830772]
多言語事前学習モデルは文法に関する言語・ユニバーサルの抽象化を導出できると推測する。
43の言語と14のモルフォシンタクティックなカテゴリーで、最先端のニューロンレベルのプローブを用いて、初めて大規模な実験を行った。
論文 参考訳(メタデータ) (2022-05-04T12:22:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。