Do Edges Matter? Investigating Edge-Enhanced Pre-Training for Medical Image Segmentation
- URL: http://arxiv.org/abs/2508.02281v1
- Date: Mon, 04 Aug 2025 10:52:42 GMT
- Title: Do Edges Matter? Investigating Edge-Enhanced Pre-Training for Medical Image Segmentation
- Authors: Paul Zaha, Lars Böcking, Simeon Allmendinger, Leopold Müller, Niklas Kühl,
- Abstract summary: Existing research shows that pre-trained and finetuned foundation models can boost segmentation performance.<n>We investigate how particular image preprocessing steps may influence segmentation performance across different medical imaging modalities.
- Score: 3.600103961894953
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Medical image segmentation is crucial for disease diagnosis and treatment planning, yet developing robust segmentation models often requires substantial computational resources and large datasets. Existing research shows that pre-trained and finetuned foundation models can boost segmentation performance. However, questions remain about how particular image preprocessing steps may influence segmentation performance across different medical imaging modalities. In particular, edges-abrupt transitions in pixel intensity-are widely acknowledged as vital cues for object boundaries but have not been systematically examined in the pre-training of foundation models. We address this gap by investigating to which extend pre-training with data processed using computationally efficient edge kernels, such as kirsch, can improve cross-modality segmentation capabilities of a foundation model. Two versions of a foundation model are first trained on either raw or edge-enhanced data across multiple medical imaging modalities, then finetuned on selected raw subsets tailored to specific medical modalities. After systematic investigation using the medical domains Dermoscopy, Fundus, Mammography, Microscopy, OCT, US, and XRay, we discover both increased and reduced segmentation performance across modalities using edge-focused pre-training, indicating the need for a selective application of this approach. To guide such selective applications, we propose a meta-learning strategy. It uses standard deviation and image entropy of the raw image to choose between a model pre-trained on edge-enhanced or on raw data for optimal performance. Our experiments show that integrating this meta-learning layer yields an overall segmentation performance improvement across diverse medical imaging tasks by 16.42% compared to models pre-trained on edge-enhanced data only and 19.30% compared to models pre-trained on raw data only.
Related papers
- PathSegDiff: Pathology Segmentation using Diffusion model representations [63.20694440934692]
We propose PathSegDiff, a novel approach for histopathology image segmentation that leverages Latent Diffusion Models (LDMs) as pre-trained featured extractors.<n>Our method utilizes a pathology-specific LDM, guided by a self-supervised encoder, to extract rich semantic information from H&E stained histopathology images.<n>Our experiments demonstrate significant improvements over traditional methods on the BCSS and GlaS datasets.
arXiv Detail & Related papers (2025-04-09T14:58:21Z) - Efficient MedSAMs: Segment Anything in Medical Images on Laptop [69.28565867103542]
We organized the first international competition dedicated to promptable medical image segmentation.<n>The top teams developed lightweight segmentation foundation models and implemented an efficient inference pipeline.<n>The best-performing algorithms have been incorporated into the open-source software with a user-friendly interface to facilitate clinical adoption.
arXiv Detail & Related papers (2024-12-20T17:33:35Z) - Embeddings are all you need! Achieving High Performance Medical Image Classification through Training-Free Embedding Analysis [0.0]
Developing artificial intelligence (AI) and machine learning (ML) models for medical imaging typically involves extensive training and testing on large datasets.<n>We investigated the feasibility of replacing conventional training procedures with an embedding-based approach.
arXiv Detail & Related papers (2024-12-12T16:59:37Z) - Generative AI Enables Medical Image Segmentation in Ultra Low-Data Regimes [35.151834585823224]
We introduce a generative deep learning framework, which uniquely generates high-quality paired segmentation masks and medical images.
Unlike traditional generative models that treat data generation and segmentation model training as separate processes, our method employs multi-level optimization for end-to-end data generation.
Our method demonstrated strong generalization performance across 9 diverse medical image segmentation tasks and on 16 datasets, in ultra-low data regimes.
arXiv Detail & Related papers (2024-08-30T17:11:36Z) - Benchmarking Retinal Blood Vessel Segmentation Models for Cross-Dataset and Cross-Disease Generalization [5.237321836999284]
We train and evaluate five published models on the publicly available FIVES fundus image dataset.
We find that image quality is a key factor determining segmentation outcomes.
arXiv Detail & Related papers (2024-06-21T09:12:34Z) - Explanations of Classifiers Enhance Medical Image Segmentation via
End-to-end Pre-training [37.11542605885003]
Medical image segmentation aims to identify and locate abnormal structures in medical images, such as chest radiographs, using deep neural networks.
Our work collects explanations from well-trained classifiers to generate pseudo labels of segmentation tasks.
We then use Integrated Gradients (IG) method to distill and boost the explanations obtained from the classifiers, generating massive diagnosis-oriented localization labels (DoLL)
These DoLL-annotated images are used for pre-training the model before fine-tuning it for downstream segmentation tasks, including COVID-19 infectious areas, lungs, heart, and clavicles.
arXiv Detail & Related papers (2024-01-16T16:18:42Z) - Certification of Deep Learning Models for Medical Image Segmentation [44.177565298565966]
We present for the first time a certified segmentation baseline for medical imaging based on randomized smoothing and diffusion models.
Our results show that leveraging the power of denoising diffusion probabilistic models helps us overcome the limits of randomized smoothing.
arXiv Detail & Related papers (2023-10-05T16:40:33Z) - From CNN to Transformer: A Review of Medical Image Segmentation Models [7.3150850275578145]
Deep learning for medical image segmentation has become a prevalent trend.
In this paper, we conduct a survey of the most representative four medical image segmentation models in recent years.
We theoretically analyze the characteristics of these models and quantitatively evaluate their performance on two benchmark datasets.
arXiv Detail & Related papers (2023-08-10T02:48:57Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
We propose a learnable weight-based hybrid medical image segmentation approach.
Our approach is easy to integrate into any hybrid model and requires no external training data.
Experiments on multi-organ and lung cancer segmentation tasks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-06-15T17:55:05Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.