論文の概要: Qwen-Image Technical Report
- arxiv url: http://arxiv.org/abs/2508.02324v1
- Date: Mon, 04 Aug 2025 11:49:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 18:25:22.317235
- Title: Qwen-Image Technical Report
- Title(参考訳): Qwen画像技術報告
- Authors: Chenfei Wu, Jiahao Li, Jingren Zhou, Junyang Lin, Kaiyuan Gao, Kun Yan, Sheng-ming Yin, Shuai Bai, Xiao Xu, Yilei Chen, Yuxiang Chen, Zecheng Tang, Zekai Zhang, Zhengyi Wang, An Yang, Bowen Yu, Chen Cheng, Dayiheng Liu, Deqing Li, Hang Zhang, Hao Meng, Hu Wei, Jingyuan Ni, Kai Chen, Kuan Cao, Liang Peng, Lin Qu, Minggang Wu, Peng Wang, Shuting Yu, Tingkun Wen, Wensen Feng, Xiaoxiao Xu, Yi Wang, Yichang Zhang, Yongqiang Zhu, Yujia Wu, Yuxuan Cai, Zenan Liu,
- Abstract要約: Qwen-Imageは複雑なテキストのレンダリングと正確な画像編集において大きな進歩を遂げた画像生成基盤モデルである。
我々は、大規模なデータ収集、フィルタリング、アノテーション、合成、バランスを含む包括的なデータパイプラインを設計する。
Qwen-Imageは、英語のようなアルファベットの言語で非常によく機能し、中国語のようなより挑戦的なログラフ言語でも顕著な進歩を遂げている。
- 参考スコア(独自算出の注目度): 86.46471547116158
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present Qwen-Image, an image generation foundation model in the Qwen series that achieves significant advances in complex text rendering and precise image editing. To address the challenges of complex text rendering, we design a comprehensive data pipeline that includes large-scale data collection, filtering, annotation, synthesis, and balancing. Moreover, we adopt a progressive training strategy that starts with non-text-to-text rendering, evolves from simple to complex textual inputs, and gradually scales up to paragraph-level descriptions. This curriculum learning approach substantially enhances the model's native text rendering capabilities. As a result, Qwen-Image not only performs exceptionally well in alphabetic languages such as English, but also achieves remarkable progress on more challenging logographic languages like Chinese. To enhance image editing consistency, we introduce an improved multi-task training paradigm that incorporates not only traditional text-to-image (T2I) and text-image-to-image (TI2I) tasks but also image-to-image (I2I) reconstruction, effectively aligning the latent representations between Qwen2.5-VL and MMDiT. Furthermore, we separately feed the original image into Qwen2.5-VL and the VAE encoder to obtain semantic and reconstructive representations, respectively. This dual-encoding mechanism enables the editing module to strike a balance between preserving semantic consistency and maintaining visual fidelity. Qwen-Image achieves state-of-the-art performance, demonstrating its strong capabilities in both image generation and editing across multiple benchmarks.
- Abstract(参考訳): 本稿では,Qwenシリーズにおける画像生成基盤モデルであるQwen-Imageについて述べる。
複雑なテキストレンダリングの課題に対処するために、大規模なデータ収集、フィルタリング、アノテーション、合成、バランスを含む包括的なデータパイプラインを設計する。
さらに、非テキスト間レンダリングから始まり、単純なテキスト入力から複雑なテキスト入力へと進化し、段落レベルの記述まで徐々にスケールするプログレッシブトレーニング戦略を採用する。
このカリキュラム学習アプローチは、モデルのネイティブテキストレンダリング機能を大幅に強化する。
結果として、Qwen-Imageは英語のようなアルファベットの言語で非常によく機能するだけでなく、中国語のようなより困難なログラフ言語でも顕著な進歩を遂げている。
画像編集の整合性を高めるため,従来のテキスト・ツー・イメージ(T2I)とテキスト・ツー・イメージ(TI2I)タスクだけでなく,画像・ツー・イメージ(I2I)再構成も取り入れたマルチタスク学習パラダイムを導入し,Qwen2.5-VLとMMDiTの遅延表現を効果的に整合させる。
さらに、元の画像をQwen2.5-VLとVAEエンコーダに別々に供給し、それぞれ意味的および再構成的表現を得る。
この二重符号化機構により、編集モジュールはセマンティック一貫性の維持と視覚的忠実性の維持のバランスをとることができる。
Qwen-Imageは最先端のパフォーマンスを実現し、複数のベンチマークで画像生成と編集の両面で強力な機能を示している。
関連論文リスト
- UniGlyph: Unified Segmentation-Conditioned Diffusion for Precise Visual Text Synthesis [38.658170067715965]
画素レベルの視覚テキストマスクを統一された条件入力として用いるセグメンテーション誘導フレームワークを提案する。
提案手法は,AnyTextベンチマークの最先端性能を実現する。
レイアウトテストのためのGlyphMM-benchmarkと、小規模テキスト領域における生成品質の評価のためのMiniText-benchmarkの2つの新しいベンチマークも導入した。
論文 参考訳(メタデータ) (2025-07-01T17:42:19Z) - Unified Autoregressive Visual Generation and Understanding with Continuous Tokens [52.21981295470491]
We present UniFluid, a unified autoregressive framework for joint visual generation and understanding。
我々の統合自己回帰アーキテクチャはマルチモーダル画像とテキスト入力を処理し、テキストの離散トークンと画像の連続トークンを生成する。
画像生成と理解タスクの間には本質的にトレードオフがあることに気付きましたが、注意深く調整されたトレーニングレシピによって互いに改善できるようになりました。
論文 参考訳(メタデータ) (2025-03-17T17:58:30Z) - Seedream 2.0: A Native Chinese-English Bilingual Image Generation Foundation Model [69.09404597939744]
Seedream 2.0は、中国語と英語のバイリンガル画像生成基盤モデルである。
中国語と英語の両方でテキストプロンプトを管理し、バイリンガル画像生成とテキストレンダリングをサポートする。
テキストエンコーダとして自己開発されたバイリンガルな大規模言語モデルと統合されており、大量のデータから直接ネイティブ知識を学習することができる。
論文 参考訳(メタデータ) (2025-03-10T17:58:33Z) - Translatotron-V(ison): An End-to-End Model for In-Image Machine Translation [81.45400849638347]
In-image Machine Translation (IIMT) は、ソース言語のテキストを含む画像をターゲット言語の翻訳を含む画像に変換することを目的としている。
本稿では,4つのモジュールからなるエンドツーエンドIIMTモデルを提案する。
本モデルでは,70.9%のパラメータしか持たないカスケードモデルと比較して競争性能が向上し,画素レベルのエンド・ツー・エンドIIMTモデルよりも大幅に優れていた。
論文 参考訳(メタデータ) (2024-07-03T08:15:39Z) - Prompt-Consistency Image Generation (PCIG): A Unified Framework Integrating LLMs, Knowledge Graphs, and Controllable Diffusion Models [20.19571676239579]
生成した画像と対応する記述とのアライメントを強化するための,拡散に基づく新しいフレームワークを提案する。
この枠組みは不整合現象の包括的解析に基づいて構築され,画像の表示に基づいて分類する。
次に、最先端の制御可能な画像生成モデルとビジュアルテキスト生成モジュールを統合し、元のプロンプトと整合した画像を生成する。
論文 参考訳(メタデータ) (2024-06-24T06:12:16Z) - SPIRE: Semantic Prompt-Driven Image Restoration [66.26165625929747]
セマンティック・復元型画像復元フレームワークであるSPIREを開発した。
本手法は,復元強度の量的仕様を言語ベースで記述することで,より詳細な指導を支援する最初のフレームワークである。
本実験は, SPIREの修復性能が, 現状と比較して優れていることを示すものである。
論文 参考訳(メタデータ) (2023-12-18T17:02:30Z) - Story Visualization by Online Text Augmentation with Context Memory [64.86944645907771]
オンラインテキスト拡張による双方向トランスフォーマーフレームワークのための新しいメモリアーキテクチャを提案する。
提案手法は, FID, キャラクタF1, フレーム精度, BLEU-2/3, R精度など, 様々な指標において, 芸術の状態を著しく上回っている。
論文 参考訳(メタデータ) (2023-08-15T05:08:12Z) - Plug-and-Play Diffusion Features for Text-Driven Image-to-Image
Translation [10.39028769374367]
本稿では,画像間翻訳の領域にテキスト・ツー・イメージ合成を取り入れた新しいフレームワークを提案する。
本手法は,事前学習したテキスト・画像拡散モデルのパワーを利用して,対象のテキストに適合する新たな画像を生成する。
論文 参考訳(メタデータ) (2022-11-22T20:39:18Z) - Scaling Autoregressive Models for Content-Rich Text-to-Image Generation [95.02406834386814]
Partiは、テキスト・ツー・イメージ生成をシーケンス・ツー・シーケンス・モデリング問題として扱う。
PartiはTransformerベースの画像トークンライザViT-VQGANを使用して、画像を離散トークンのシーケンスとしてエンコードする。
PartiPrompts (P2)は1600以上の英語のプロンプトの総合的なベンチマークである。
論文 参考訳(メタデータ) (2022-06-22T01:11:29Z) - ERNIE-ViLG: Unified Generative Pre-training for Bidirectional
Vision-Language Generation [22.47279425592133]
ERNIE-ViLGは,双方向画像テキスト生成のための統合型事前学習フレームワークである。
テキスト・ツー・イメージ生成プロセスにおいて,視覚的シーケンス生成器と画像再構成器を協調的に学習するエンドツーエンド・トレーニング手法を提案する。
我々は,1億4500万(中国語)の画像テキストペアからなる大規模データセット上で,10ビリオンパラメータERNIE-ViLGモデルをトレーニングする。
論文 参考訳(メタデータ) (2021-12-31T03:53:33Z) - Text to Image Generation with Semantic-Spatial Aware GAN [41.73685713621705]
テキストから画像生成(T2I)モデルは、テキスト記述と意味的に一致するフォトリアリズム画像を生成することを目的としている。
本稿では,テキストエンコーダがより良いテキスト情報を活用できるように,エンドツーエンドで訓練された新しいフレームワークSemantic-Spatial Aware GANを提案する。
論文 参考訳(メタデータ) (2021-04-01T15:48:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。