CLIP-IN: Enhancing Fine-Grained Visual Understanding in CLIP via Instruction Editing Data and Long Captions
- URL: http://arxiv.org/abs/2508.02329v1
- Date: Mon, 04 Aug 2025 11:57:10 GMT
- Title: CLIP-IN: Enhancing Fine-Grained Visual Understanding in CLIP via Instruction Editing Data and Long Captions
- Authors: Ziteng Wang, Siqi Yang, Limeng Qiao, Lin Ma,
- Abstract summary: We present CLIP-IN, a novel framework that bolsters CLIP's fine-grained perception through two core innovations.<n> Firstly, we leverage instruction-editing datasets, originally designed for image manipulation, as a unique source of hard negative image-text pairs.<n> Secondly, CLIP-IN incorporates long captions, utilizing rotary positional encodings to capture rich semantic context often missed by standard CLIP.
- Score: 17.05291662808873
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the success of Vision-Language Models (VLMs) like CLIP in aligning vision and language, their proficiency in detailed, fine-grained visual comprehension remains a key challenge. We present CLIP-IN, a novel framework that bolsters CLIP's fine-grained perception through two core innovations. Firstly, we leverage instruction-editing datasets, originally designed for image manipulation, as a unique source of hard negative image-text pairs. Coupled with a symmetric hard negative contrastive loss, this enables the model to effectively distinguish subtle visual-semantic differences. Secondly, CLIP-IN incorporates long descriptive captions, utilizing rotary positional encodings to capture rich semantic context often missed by standard CLIP. Our experiments demonstrate that CLIP-IN achieves substantial gains on the MMVP benchmark and various fine-grained visual recognition tasks, without compromising robust zero-shot performance on broader classification and retrieval tasks. Critically, integrating CLIP-IN's visual representations into Multimodal Large Language Models significantly reduces visual hallucinations and enhances reasoning abilities. This work underscores the considerable potential of synergizing targeted, instruction-based contrastive learning with comprehensive descriptive information to elevate the fine-grained understanding of VLMs.
Related papers
- ViCrit: A Verifiable Reinforcement Learning Proxy Task for Visual Perception in VLMs [98.27348724529257]
We introduce ViCrit (Visual Caption Hallucination Critic), an RL proxy task that trains VLMs to localize a subtle, synthetic visual hallucination injected into paragraphs of human-written image captions.<n>Models trained with the ViCrit Task exhibit substantial gains across a variety of vision-language models benchmarks.
arXiv Detail & Related papers (2025-06-11T19:16:54Z) - DINOv2 Meets Text: A Unified Framework for Image- and Pixel-Level Vision-Language Alignment [20.953645420787527]
We train a CLIP-like model with only a fraction of the computational cost compared to CLIP.<n>We achieve state-of-the-art results in zero-shot classification and open-vocabulary semantic segmentation.
arXiv Detail & Related papers (2024-12-20T20:46:48Z) - Learning Visual Composition through Improved Semantic Guidance [19.24813992815684]
We show that by substantially improving weakly labeled data, we can vastly improve the performance of standard contrastive learning approaches.<n>We showcase our results on a relatively new captioning benchmark derived from DOCCI.<n>We demonstrate through a series of ablations that a standard CLIP model trained with enhanced data may demonstrate impressive performance on image retrieval tasks.
arXiv Detail & Related papers (2024-12-19T20:58:26Z) - VladVA: Discriminative Fine-tuning of LVLMs [67.14293827774827]
Contrastively-trained Vision-Language Models (VLMs) like CLIP have become the de facto approach for discriminative vision-language representation learning.<n>We propose to combine "the best of both worlds": a new training approach for discriminative fine-tuning of LVLMs.
arXiv Detail & Related papers (2024-12-05T17:54:27Z) - Diffusion Feedback Helps CLIP See Better [40.125318318373715]
Contrastive Language-Image Pre-training (CLIP) excels at abstracting open-world representations across domains and modalities.
CLIP has severe visual shortcomings, such as which can hardly distinguish orientation, quantity, color, structure.
We present a post-training approach for CLIP models, which largely overcomes its visual shortcomings via a self-supervised diffusion process.
arXiv Detail & Related papers (2024-07-29T17:00:09Z) - SignVTCL: Multi-Modal Continuous Sign Language Recognition Enhanced by
Visual-Textual Contrastive Learning [51.800031281177105]
SignVTCL is a continuous sign language recognition framework enhanced by visual-textual contrastive learning.
It integrates multi-modal data (video, keypoints, and optical flow) simultaneously to train a unified visual backbone.
It achieves state-of-the-art results compared with previous methods.
arXiv Detail & Related papers (2024-01-22T11:04:55Z) - Eyes Wide Shut? Exploring the Visual Shortcomings of Multimodal LLMs [50.77984109941538]
Our research reveals that the visual capabilities in recent multimodal LLMs still exhibit systematic shortcomings.
We identify ''CLIP-blind pairs'' - images that CLIP perceives as similar despite their clear visual differences.
We evaluate various CLIP-based vision-and-language models and found a notable correlation between visual patterns that challenge CLIP models and those problematic for multimodal LLMs.
arXiv Detail & Related papers (2024-01-11T18:58:36Z) - SgVA-CLIP: Semantic-guided Visual Adapting of Vision-Language Models for
Few-shot Image Classification [84.05253637260743]
We propose a new framework, named Semantic-guided Visual Adapting (SgVA), to extend vision-language pre-trained models.
SgVA produces discriminative task-specific visual features by comprehensively using a vision-specific contrastive loss, a cross-modal contrastive loss, and an implicit knowledge distillation.
State-of-the-art results on 13 datasets demonstrate that the adapted visual features can well complement the cross-modal features to improve few-shot image classification.
arXiv Detail & Related papers (2022-11-28T14:58:15Z) - Non-Contrastive Learning Meets Language-Image Pre-Training [145.6671909437841]
We study the validity of non-contrastive language-image pre-training (nCLIP)
We introduce xCLIP, a multi-tasking framework combining CLIP and nCLIP, and show that nCLIP aids CLIP in enhancing feature semantics.
arXiv Detail & Related papers (2022-10-17T17:57:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.