論文の概要: Detecting COPD Through Speech Analysis: A Dataset of Danish Speech and Machine Learning Approach
- arxiv url: http://arxiv.org/abs/2508.02354v1
- Date: Mon, 04 Aug 2025 12:44:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 18:25:22.332981
- Title: Detecting COPD Through Speech Analysis: A Dataset of Danish Speech and Machine Learning Approach
- Title(参考訳): 音声分析による COPD の検出:デンマーク語音声と機械学習のアプローチのデータセット
- Authors: Cuno Sankey-Olsen, Rasmus Hvass Olesen, Tobias Oliver Eberhard, Andreas Triantafyllopoulos, Björn Schuller, Ilhan Aslan,
- Abstract要約: 慢性閉塞性肺疾患(慢性閉塞性肺疾患、COPD)は、世界中の数百万人に影響を与える重篤で不安定な疾患である。
本研究は,COPD医療ソリューションの一部として,非侵襲的,遠隔的,スケーラブルなスクリーニングツールとしての音声分析の可能性を支持する。
- 参考スコア(独自算出の注目度): 4.132109134011237
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Chronic Obstructive Pulmonary Disease (COPD) is a serious and debilitating disease affecting millions around the world. Its early detection using non-invasive means could enable preventive interventions that improve quality of life and patient outcomes, with speech recently shown to be a valuable biomarker. Yet, its validity across different linguistic groups remains to be seen. To that end, audio data were collected from 96 Danish participants conducting three speech tasks (reading, coughing, sustained vowels). Half of the participants were diagnosed with different levels of COPD and the other half formed a healthy control group. Subsequently, we investigated different baseline models using openSMILE features and learnt x-vector embeddings. We obtained a best accuracy of 67% using openSMILE features and logistic regression. Our findings support the potential of speech-based analysis as a non-invasive, remote, and scalable screening tool as part of future COPD healthcare solutions.
- Abstract(参考訳): 慢性閉塞性肺疾患(慢性閉塞性肺疾患、COPD)は、世界中の数百万人に影響を与える重篤で不安定な疾患である。
非侵襲的な手段を用いた早期発見は、生命の質と患者の結果を改善する予防的介入を可能にする可能性がある。
しかし、その妥当性は異なる言語群にまたがっている。
その目的のために、96人のデンマーク人参加者から音声データを収集し、3つの音声タスク(読み上げ、くしゃみ、持続母音)を行った。
被験者の半数は COPD のレベルが異なると診断され、残り半分は健常な対照群を形成した。
次に、openSMILE機能と学習したx-vector埋め込みを用いて、異なるベースラインモデルについて検討した。
openSMILE特徴とロジスティック回帰を用いて67%の精度を得た。
本研究は,COPD医療ソリューションの一部として,非侵襲的,遠隔的,スケーラブルなスクリーニングツールとしての音声分析の可能性を支持する。
関連論文リスト
- Dementia Insights: A Context-Based MultiModal Approach [0.3749861135832073]
早期発見は、病気の進行を遅らせる可能性のあるタイムリーな介入に不可欠である。
テキストと音声のための大規模事前学習モデル(LPM)は、認知障害の識別において有望であることを示している。
本研究は,テキストデータと音声データを最高の性能のLPMを用いて統合する,コンテキストベースのマルチモーダル手法を提案する。
論文 参考訳(メタデータ) (2025-03-03T06:46:26Z) - Uncertainty-aware Medical Diagnostic Phrase Identification and Grounding [72.18719355481052]
MRG(Messical Report Grounding)と呼ばれる新しい課題について紹介する。
MRGは医療報告から診断フレーズとその対応する接地箱を直接エンドツーエンドで識別することを目的としている。
マルチモーダルな大規模言語モデルを用いて診断フレーズを予測する,堅牢で信頼性の高いフレームワークである uMedGround を提案する。
論文 参考訳(メタデータ) (2024-04-10T07:41:35Z) - Speech motion anomaly detection via cross-modal translation of 4D motion
fields from tagged MRI [12.515470808059666]
本研究は, 音声の動作異常を検出するための枠組みを, 対応する音声と組み合わせて開発することを目的とする。
これは、健康な個人のみのデータに基づいて訓練された深いクロスモーダルトランスレータを使用することによって達成される。
一級のSVMは、健康な個人の分光図と患者の分光図を区別するために使用される。
論文 参考訳(メタデータ) (2024-02-10T16:16:24Z) - Variational Autoencoders for Feature Exploration and Malignancy
Prediction of Lung Lesions [0.0]
肺がんはイギリスで21%のがん死の原因となっている。
最近の研究は、定期的なスキャンから肺がんの正確な早期診断のためのAI手法の能力を実証している。
本研究では, 変異型オートエンコーダ(VAE)の肺癌病変に対する応用について検討した。
論文 参考訳(メタデータ) (2023-11-27T11:12:33Z) - Automatically measuring speech fluency in people with aphasia: first
achievements using read-speech data [55.84746218227712]
本研究の目的は,言語習得の分野で開発された信号処理algorithmの関連性を評価することである。
論文 参考訳(メタデータ) (2023-08-09T07:51:40Z) - Exploring Multimodal Approaches for Alzheimer's Disease Detection Using
Patient Speech Transcript and Audio Data [10.782153332144533]
アルツハイマー病(英語: Alzheimer's disease、AD)は、認知症の一種であり、患者の健康に深刻な影響を及ぼす。
本研究では,DmentiaBank Pittデータベースから患者の音声と転写データを用いたAD検出法について検討した。
論文 参考訳(メタデータ) (2023-07-05T12:40:11Z) - Decoding speech perception from non-invasive brain recordings [48.46819575538446]
非侵襲的な記録から知覚音声の自己教師付き表現をデコードするために、コントラスト学習で訓練されたモデルを導入する。
我々のモデルでは、3秒のMEG信号から、1,000以上の異なる可能性から最大41%の精度で対応する音声セグメントを識別できる。
論文 参考訳(メタデータ) (2022-08-25T10:01:43Z) - Exploring linguistic feature and model combination for speech
recognition based automatic AD detection [61.91708957996086]
音声ベースの自動ADスクリーニングシステムは、他の臨床スクリーニング技術に代わる非侵襲的でスケーラブルな代替手段を提供する。
専門的なデータの収集は、そのようなシステムを開発する際に、モデル選択と特徴学習の両方に不確実性をもたらす。
本稿では,BERT と Roberta の事前学習したテキストエンコーダのドメイン微調整の堅牢性向上のための特徴とモデルの組み合わせ手法について検討する。
論文 参考訳(メタデータ) (2022-06-28T05:09:01Z) - Few-Shot Cross-lingual Transfer for Coarse-grained De-identification of
Code-Mixed Clinical Texts [56.72488923420374]
事前学習型言語モデル (LM) は低リソース環境下での言語間移動に大きな可能性を示している。
脳卒中におけるコードミキシング(スペイン・カタラン)臨床ノートの低リソース・実世界の課題を解決するために,NER (name recognition) のためのLMの多言語間転写特性を示す。
論文 参考訳(メタデータ) (2022-04-10T21:46:52Z) - Assessing clinical utility of Machine Learning and Artificial
Intelligence approaches to analyze speech recordings in Multiple Sclerosis: A
Pilot Study [1.6582693134062305]
本研究の目的は, 音声記録を用いた多発性硬化症の診断, バイオマーカー抽出, 進展モニタリングを支援するための機械学習と深層学習/AIアプローチの臨床的有用性を検討することである。
ランダムフォレストモデルは、バリデーションデータセットの精度0.82、トレーニングデータセットの5k倍サイクルの面積0.76の精度を達成した。
論文 参考訳(メタデータ) (2021-09-20T21:02:37Z) - NUVA: A Naming Utterance Verifier for Aphasia Treatment [49.114436579008476]
失語症(PWA)患者の治療介入に対する反応の診断とモニタリングの両立のための画像命名タスクを用いた音声性能評価
本稿では,失語症脳卒中患者の「正しい」と「正しくない」を分類する深層学習要素を組み込んだ発話検証システムであるNUVAについて述べる。
イギリス系英語8ヶ国語でのテストでは、システムの性能精度は83.6%から93.6%の範囲であり、10倍のクロスバリデーション平均は89.5%であった。
論文 参考訳(メタデータ) (2021-02-10T13:00:29Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
我々は、集中治療室入院の必要性を予測するために、人口統計、バイタルサイン、実験室の所見から、肺不透明度の放射能と非画像の特徴を組み合わせる。
また, 地域性肺炎を含む他の肺疾患にも適用できるが, 地域性肺炎に限らない。
論文 参考訳(メタデータ) (2020-07-20T19:08:50Z) - Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent
Multi-View Representation Learning [48.05232274463484]
最近、コロナウイルス病2019(COVID-19)の流行は世界中で急速に広まっている。
多くの患者と医師の重労働のために、機械学習アルゴリズムによるコンピュータ支援診断が緊急に必要である。
本研究では,CT画像から抽出した一連の特徴を用いて,COVID-19の診断を行うことを提案する。
論文 参考訳(メタデータ) (2020-05-06T15:19:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。