論文の概要: Enhancing Object Discovery for Unsupervised Instance Segmentation and Object Detection
- arxiv url: http://arxiv.org/abs/2508.02386v1
- Date: Mon, 04 Aug 2025 13:10:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 18:25:22.347105
- Title: Enhancing Object Discovery for Unsupervised Instance Segmentation and Object Detection
- Title(参考訳): 教師なしインスタンスセグメンテーションとオブジェクト検出のためのオブジェクト発見の強化
- Authors: Xingyu Feng, Hebei Gao, Hong Li,
- Abstract要約: COLERはゼロショットの教師なしモデルであり、複数のベンチマークで従来の最先端メソッドより優れている。
我々は、CutOnceが自己教師付きモデルのオブジェクト発見機能を完全に活用できるように、いくつかの新しい単純なモジュールを設計しました。
- 参考スコア(独自算出の注目度): 2.0306212295074366
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose Cut-Once-and-LEaRn (COLER), a simple approach for unsupervised instance segmentation and object detection. COLER first uses our developed CutOnce to generate coarse pseudo labels, then enables the detector to learn from these masks. CutOnce applies Normalized Cut only once and does not rely on any clustering methods, but it can generate multiple object masks in an image. We have designed several novel yet simple modules that not only allow CutOnce to fully leverage the object discovery capabilities of self-supervised models, but also free it from reliance on mask post-processing. During training, COLER achieves strong performance without requiring specially designed loss functions for pseudo labels, and its performance is further improved through self-training. COLER is a zero-shot unsupervised model that outperforms previous state-of-the-art methods on multiple benchmarks.We believe our method can help advance the field of unsupervised object localization.
- Abstract(参考訳): COLER(Cut-Once-and-LEaRn)を提案する。
COLERはまず、開発したCutOnceを使って粗い擬似ラベルを生成し、そのマスクから検出器を学習します。
CutOnceは正規化カットを1回だけ適用し、いかなるクラスタリングメソッドにも依存しないが、イメージ内に複数のオブジェクトマスクを生成することができる。
我々は、CutOnceが自己教師付きモデルのオブジェクト発見機能を完全に活用できるだけでなく、マスク後処理に頼らないよう、いくつかの新しい単純なモジュールを設計しました。
トレーニング中、COLERは擬似ラベルのために特別に設計された損失関数を必要とせず、その性能は自己学習によりさらに向上する。
COLERは、従来の最先端手法を複数のベンチマークで上回るゼロショット非教師付きモデルであり、我々の手法は、教師なしオブジェクトのローカライゼーションの分野を前進させるのに役立つと信じている。
関連論文リスト
- ProMerge: Prompt and Merge for Unsupervised Instance Segmentation [4.297070083645049]
教師なしのインスタンスセグメンテーションは、人間のラベル付きデータに頼ることなく、イメージ内の異なるオブジェクトインスタンスをセグメントすることを目的としている。
最近の最先端のアプローチでは、自己教師機能を使用して画像をグラフとして表現し、一般化された固有値系を解き、前景マスクを生成する。
Prompt and Merge(ProMerge)を提案する。これは、セルフ教師付き視覚機能を利用して、パッチの初期グループ化を取得し、これらのセグメントに戦略的マージを適用する。
論文 参考訳(メタデータ) (2024-09-27T17:59:42Z) - Unsupervised Universal Image Segmentation [59.0383635597103]
本稿では,Unsupervised Universal Model (U2Seg) を提案する。
U2Segは、自己教師付きモデルを利用して、これらのセグメンテーションタスクの擬似意味ラベルを生成する。
次に、これらの擬似意味ラベル上でモデルを自己学習し、かなりの性能向上をもたらす。
論文 参考訳(メタデータ) (2023-12-28T18:59:04Z) - Segment, Select, Correct: A Framework for Weakly-Supervised Referring Segmentation [63.13635858586001]
参照画像(RIS)は、自然言語文を通して画像中の物体を識別する問題である。
本稿では、RISを3つのステップに分解することで、RISに対処する弱い教師付きフレームワークを提案する。
最初の2ステップ(ゼロショットセグメントとセレクト)のみを使用して、他のゼロショットベースラインを最大16.5%上回る。
論文 参考訳(メタデータ) (2023-10-20T13:20:17Z) - Object-Centric Multiple Object Tracking [124.30650395969126]
本稿では,多目的追跡パイプラインのためのビデオオブジェクト中心モデルを提案する。
オブジェクト中心のスロットを検出出力に適応するインデックスマージモジュールと、オブジェクトメモリモジュールで構成される。
オブジェクト中心学習に特化して、オブジェクトのローカライゼーションと機能バインディングのためのスパース検出ラベルしか必要としない。
論文 参考訳(メタデータ) (2023-09-01T03:34:12Z) - Cut and Learn for Unsupervised Object Detection and Instance
Segmentation [65.43627672225624]
Cut-and-LeaRn(CutLER)は、教師なしオブジェクトの検出とセグメンテーションモデルをトレーニングするためのシンプルなアプローチである。
CutLERはゼロショット非監視検出器であり、11のベンチマークでAP50を2.7倍以上改善している。
論文 参考訳(メタデータ) (2023-01-26T18:57:13Z) - Unsupervised Object Localization: Observing the Background to Discover
Objects [4.870509580034194]
本研究では,異なるアプローチを採り,その代わりに背景を探すことを提案する。
このようにして、健全なオブジェクトは、オブジェクトが何であるべきかを強く仮定することなく、副産物として現れます。
自己教師型パッチベース表現から抽出した粗い背景マスクを備えた1ドルconv1times1$のシンプルなモデルであるFOUNDを提案する。
論文 参考訳(メタデータ) (2022-12-15T13:43:11Z) - Object-wise Masked Autoencoders for Fast Pre-training [13.757095663704858]
現在のマスク付き画像符号化モデルは、単一のオブジェクト表現ではなく、シーン全体のすべてのオブジェクト間の基盤となる関係を学習することを示す。
興味のある領域マスクを用いて選択的な再構成を行うことで、オブジェクトの表現を学習するための非オブジェクトパッチをドロップする、新しいオブジェクト選択と分割戦略を導入する。
4つの一般的なデータセットの実験は、競争性能を達成しつつ計算コストを72%削減する上で、我々のモデルの有効性を実証している。
論文 参考訳(メタデータ) (2022-05-28T05:13:45Z) - FreeSOLO: Learning to Segment Objects without Annotations [191.82134817449528]
我々は,単純なインスタンスセグメンテーションメソッドSOLO上に構築された自己教師型インスタンスセグメンテーションフレームワークであるFreeSOLOを紹介する。
また,本手法では,複雑なシーンからオブジェクトを教師なしで検出する,新たなローカライズ対応事前学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-24T16:31:44Z) - Weakly-Supervised Saliency Detection via Salient Object Subitizing [57.17613373230722]
我々は,クラス非依存であるため,弱い監督としてサリエンシー・サブイタライジングを導入する。
これにより、監視はサリエンシー検出の特性と整合することができます。
5つのベンチマークデータセットに対して広範な実験を行う。
論文 参考訳(メタデータ) (2021-01-04T12:51:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。