論文の概要: Towards Reliable Audio Deepfake Attribution and Model Recognition: A Multi-Level Autoencoder-Based Framework
- arxiv url: http://arxiv.org/abs/2508.02521v1
- Date: Mon, 04 Aug 2025 15:31:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 18:25:22.405094
- Title: Towards Reliable Audio Deepfake Attribution and Model Recognition: A Multi-Level Autoencoder-Based Framework
- Title(参考訳): 信頼性の高いオーディオディープフェイク属性とモデル認識:マルチレベルオートエンコーダベースのフレームワーク
- Authors: Andrea Di Pierno, Luca Guarnera, Dario Allegra, Sebastiano Battiato,
- Abstract要約: オーディオディープフェイクの拡散は、デジタル通信に対する信頼の高まりを示唆している。
LAVAは,音声のディープフェイク検出とモデル認識のための階層的なフレームワークである。
生成技術を識別するAudio Deepfake Attribution (ADA) と、特定の生成モデルインスタンスを認識するAudio Deepfake Model Recognition (ADMR) である。
- 参考スコア(独自算出の注目度): 8.11594945165255
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The proliferation of audio deepfakes poses a growing threat to trust in digital communications. While detection methods have advanced, attributing audio deepfakes to their source models remains an underexplored yet crucial challenge. In this paper we introduce LAVA (Layered Architecture for Voice Attribution), a hierarchical framework for audio deepfake detection and model recognition that leverages attention-enhanced latent representations extracted by a convolutional autoencoder trained solely on fake audio. Two specialized classifiers operate on these features: Audio Deepfake Attribution (ADA), which identifies the generation technology, and Audio Deepfake Model Recognition (ADMR), which recognize the specific generative model instance. To improve robustness under open-set conditions, we incorporate confidence-based rejection thresholds. Experiments on ASVspoof2021, FakeOrReal, and CodecFake show strong performance: the ADA classifier achieves F1-scores over 95% across all datasets, and the ADMR module reaches 96.31% macro F1 across six classes. Additional tests on unseen attacks from ASVpoof2019 LA and error propagation analysis confirm LAVA's robustness and reliability. The framework advances the field by introducing a supervised approach to deepfake attribution and model recognition under open-set conditions, validated on public benchmarks and accompanied by publicly released models and code. Models and code are available at https://www.github.com/adipiz99/lava-framework.
- Abstract(参考訳): オーディオディープフェイクの拡散は、デジタル通信に対する信頼の高まりを示唆している。
検出手法は進歩しているが、オーディオのディープフェイクをソースモデルにもたらすことは、まだ過小評価されているが重要な課題だ。
本稿では,音声深度検出とモデル認識のための階層的フレームワークであるLAVA(Layered Architecture for Voice Attribution)を紹介する。
生成技術を識別するAudio Deepfake Attribution (ADA) と、特定の生成モデルインスタンスを認識するAudio Deepfake Model Recognition (ADMR) である。
オープンセット条件下でのロバスト性を改善するため,信頼度に基づく拒絶閾値を組み込んだ。
ASVspoof2021、FakeOrReal、CodecFakeの実験は、強力なパフォーマンスを示している。ADA分類器は全データセットで95%以上を達成し、ADMRモジュールは6つのクラスで96.31%のマクロF1に達する。
ASVpoof2019 LAからの目に見えない攻撃とエラー伝搬分析のさらなるテストにより、LAVAの堅牢性と信頼性が確認された。
このフレームワークは、オープンセット条件下でのディープフェイク属性とモデル認識のための教師付きアプローチを導入し、パブリックベンチマークで検証し、パブリックリリースされたモデルとコードを伴って、この分野を前進させる。
モデルとコードはhttps://www.github.com/adipiz99/lava-framework.comで入手できる。
関連論文リスト
- End-to-end Audio Deepfake Detection from RAW Waveforms: a RawNet-Based Approach with Cross-Dataset Evaluation [8.11594945165255]
生波形を直接操作するオーディオディープフェイク検出のためのエンドツーエンドのディープラーニングフレームワークを提案する。
我々のモデルであるRawNetLiteは、手作りの事前処理なしでスペクトルと時間の両方の特徴を捉えるために設計された軽量な畳み込み並列アーキテクチャである。
論文 参考訳(メタデータ) (2025-04-29T16:38:23Z) - FADEL: Uncertainty-aware Fake Audio Detection with Evidential Deep Learning [9.960675988638805]
顕在学習を用いた偽音声検出(FADEL)という新しいフレームワークを提案する。
FADELはモデルの不確実性を予測に組み込んでおり、OODシナリオではより堅牢なパフォーマンスを実現している。
本研究では,異なるスプーフィングアルゴリズム間の平均不確かさと等誤差率(EER)の強い相関関係を解析し,不確かさ推定の有効性を示す。
論文 参考訳(メタデータ) (2025-04-22T07:40:35Z) - Measuring the Robustness of Audio Deepfake Detectors [59.09338266364506]
この研究は、16の一般的な汚職に対する10のオーディオディープフェイク検出モデルの頑健さを体系的に評価する。
従来のディープラーニングモデルと最先端の基礎モデルの両方を用いて、4つのユニークな観察を行う。
論文 参考訳(メタデータ) (2025-03-21T23:21:17Z) - Where are we in audio deepfake detection? A systematic analysis over generative and detection models [59.09338266364506]
SONARはAI-Audio Detection FrameworkとBenchmarkの合成である。
最先端のAI合成聴覚コンテンツを識別するための総合的な評価を提供する。
従来のモデルベース検出システムと基礎モデルベース検出システムの両方で、AIオーディオ検出を均一にベンチマークする最初のフレームワークである。
論文 参考訳(メタデータ) (2024-10-06T01:03:42Z) - A Multi-Stream Fusion Approach with One-Class Learning for Audio-Visual Deepfake Detection [17.285669984798975]
本稿では,ロバストな音声・視覚深度検出モデルを開発する上での課題について述べる。
新たな世代のアルゴリズムが絶えず出現しており、検出方法の開発中にこれらのアルゴリズムは遭遇しない。
表現レベルの正規化手法として,一級学習を用いたマルチストリーム融合手法を提案する。
論文 参考訳(メタデータ) (2024-06-20T10:33:15Z) - The Codecfake Dataset and Countermeasures for the Universally Detection of Deepfake Audio [42.84634652376024]
ALMベースのディープフェイクオーディオは、広範に広範に、高い騙しと、多目的性を示す。
本研究では,ALMに基づくディープフェイク音声を効果的に検出するために,ALMに基づく音声生成手法のメカニズムに着目した。
ドメインバランスと一般化されたミニマを学習するための CSAM 戦略を提案する。
論文 参考訳(メタデータ) (2024-05-08T08:28:40Z) - Training-Free Deepfake Voice Recognition by Leveraging Large-Scale Pre-Trained Models [52.04189118767758]
一般化は、現在のオーディオディープフェイク検出器の主な問題である。
本稿では,オーディオディープフェイク検出のための大規模事前学習モデルの可能性について検討する。
論文 参考訳(メタデータ) (2024-05-03T15:27:11Z) - Lazy Layers to Make Fine-Tuned Diffusion Models More Traceable [70.77600345240867]
新たな任意の任意配置(AIAO)戦略は、微調整による除去に耐性を持たせる。
拡散モデルの入力/出力空間のバックドアを設計する既存の手法とは異なり,本手法では,サンプルサブパスの特徴空間にバックドアを埋め込む方法を提案する。
MS-COCO,AFHQ,LSUN,CUB-200,DreamBoothの各データセットに関する実証研究により,AIAOの堅牢性が確認された。
論文 参考訳(メタデータ) (2024-05-01T12:03:39Z) - Audio Deepfake Attribution: An Initial Dataset and Investigation [41.62487394875349]
我々は、Audio Deepfake Attribution (ADA)と呼ばれるオーディオ生成ツールの属性に対する最初のディープフェイクオーディオデータセットを設計する。
オープンセットオーディオディープフェイク属性(OSADA)のためのクラス・マルチセンター学習(CRML)手法を提案する。
実験の結果,CRML法は実世界のシナリオにおけるオープンセットリスクに効果的に対処できることが示された。
論文 参考訳(メタデータ) (2022-08-21T05:15:40Z) - Fully Automated End-to-End Fake Audio Detection [57.78459588263812]
本稿では,完全自動エンドツーエンド音声検出手法を提案する。
まず、wav2vec事前学習モデルを用いて、音声の高レベル表現を得る。
ネットワーク構造には, Light-DARTS という異種アーキテクチャサーチ (DARTS) の修正版を用いる。
論文 参考訳(メタデータ) (2022-08-20T06:46:55Z) - Voice-Face Homogeneity Tells Deepfake [56.334968246631725]
既存の検出アプローチは、ディープフェイクビデオにおける特定のアーティファクトの探索に寄与する。
未探索の音声-顔のマッチングビューからディープフェイク検出を行う。
我々のモデルは、他の最先端の競合と比較して、大幅に性能が向上する。
論文 参考訳(メタデータ) (2022-03-04T09:08:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。