論文の概要: From Pixels to Pathology: Restoration Diffusion for Diagnostic-Consistent Virtual IHC
- arxiv url: http://arxiv.org/abs/2508.02528v1
- Date: Mon, 04 Aug 2025 15:36:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 18:25:22.409037
- Title: From Pixels to Pathology: Restoration Diffusion for Diagnostic-Consistent Virtual IHC
- Title(参考訳): 画像から病理へ:診断に耐性のある仮想IHCの再生拡散
- Authors: Jingsong Liu, Xiaofeng Deng, Han Li, Azar Kazemi, Christian Grashei, Gesa Wilkens, Xin You, Tanja Groll, Nassir Navab, Carolin Mogler, Peter J. Schüffler,
- Abstract要約: 本稿では,仮想染色を画像復元タスクとして再構成する構造対応染色復元拡散モデルであるStar-Diffを紹介する。
残留物とノイズに基づく生成経路を組み合わせることで、スターディフは現実的なバイオマーカーの変動をモデル化しながら組織構造を維持する。
BCIデータセットの実験は、Star-Diffが視覚的忠実度と診断関連性の両方で最先端(SOTA)のパフォーマンスを達成することを示した。
- 参考スコア(独自算出の注目度): 37.284994932355865
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hematoxylin and eosin (H&E) staining is the clinical standard for assessing tissue morphology, but it lacks molecular-level diagnostic information. In contrast, immunohistochemistry (IHC) provides crucial insights into biomarker expression, such as HER2 status for breast cancer grading, but remains costly and time-consuming, limiting its use in time-sensitive clinical workflows. To address this gap, virtual staining from H&E to IHC has emerged as a promising alternative, yet faces two core challenges: (1) Lack of fair evaluation of synthetic images against misaligned IHC ground truths, and (2) preserving structural integrity and biological variability during translation. To this end, we present an end-to-end framework encompassing both generation and evaluation in this work. We introduce Star-Diff, a structure-aware staining restoration diffusion model that reformulates virtual staining as an image restoration task. By combining residual and noise-based generation pathways, Star-Diff maintains tissue structure while modeling realistic biomarker variability. To evaluate the diagnostic consistency of the generated IHC patches, we propose the Semantic Fidelity Score (SFS), a clinical-grading-task-driven metric that quantifies class-wise semantic degradation based on biomarker classification accuracy. Unlike pixel-level metrics such as SSIM and PSNR, SFS remains robust under spatial misalignment and classifier uncertainty. Experiments on the BCI dataset demonstrate that Star-Diff achieves state-of-the-art (SOTA) performance in both visual fidelity and diagnostic relevance. With rapid inference and strong clinical alignment,it presents a practical solution for applications such as intraoperative virtual IHC synthesis.
- Abstract(参考訳): ヘマトキシリンとエオシン(H&E)染色は組織形態を評価するための臨床標準であるが、分子レベルの診断情報を欠いている。
対照的に、免疫組織化学(IHC)は、乳がんのグレーディングにおけるHER2ステータスのようなバイオマーカーの発現に関する重要な洞察を提供するが、コストと時間を要するため、時間に敏感な臨床ワークフローでの使用を制限する。
このギャップに対処するため、H&E から IHC への仮想染色は有望な代替手段として現れているが、(1) 一致しない IHC 基底真実に対する合成画像の公平な評価の欠如、(2) 翻訳中の構造的整合性と生物学的多様性の維持、という2つの課題に直面している。
この目的のために,本研究における生成と評価の両方を包含するエンドツーエンドフレームワークを提案する。
本稿では,仮想染色を画像復元タスクとして再構成する構造対応染色復元拡散モデルであるStar-Diffを紹介する。
残留物とノイズに基づく生成経路を組み合わせることで、スターディフは現実的なバイオマーカーの変動をモデル化しながら組織構造を維持する。
得られたICHパッチの診断整合性を評価するために,バイオマーカーの分類精度に基づいて分類単位のセマンティック・フィデリティ・スコア(Semantic Fidelity Score, SFS)を提案する。
SSIMやPSNRのようなピクセルレベルのメトリクスとは異なり、SFSは空間的不一致や分類器の不確実性の下で頑健である。
BCIデータセットの実験は、Star-Diffが視覚的忠実度と診断関連性の両方で最先端(SOTA)のパフォーマンスを達成することを示した。
迅速な推論と強力な臨床アライメントにより,術中仮想IHC合成などの応用の実用化が期待できる。
関連論文リスト
- USIGAN: Unbalanced Self-Information Feature Transport for Weakly Paired Image IHC Virtual Staining [4.4558198609443345]
我々は,IHC仮想染色のための非平衡自己情報機能トランスポートUSIGANを提案する。
本研究は, 連接限界分布における弱対項を除去し, 結果のコンテント一貫性と病理的セマンティック一貫性を著しく改善する。
本手法はIoDやPearson-Rの相関など,複数の臨床的に重要な指標に対して優れた性能を示し,臨床関連性の向上を実証する。
論文 参考訳(メタデータ) (2025-07-08T10:14:04Z) - Score-based Diffusion Model for Unpaired Virtual Histology Staining [7.648204151998162]
ヘマトキシリンとエオシン(H&E)染色は組織学を可視化するが、診断マーカーには特異性がない。
ヘマトキシリンおよびエオシン(H&E)染色はタンパク質標的染色を提供するが、組織可用性と抗体特異性によって制限される。
仮想染色、すなわち組織構造を保存しながらH&E画像をIHCに変換することで、効率的なIHC生成が期待できる。
本研究では,相互情報を用いた仮想染色のためのスコアベース拡散モデルを提案する。
論文 参考訳(メタデータ) (2025-06-29T11:02:45Z) - HistDiST: Histopathological Diffusion-based Stain Transfer [6.197687155055788]
HistDiSTは、高忠実度H&E-to-IHC翻訳のための潜在拡散モデル(LDM)ベースのフレームワークである。
HistDiSTは既存の手法よりも優れており、H&E-to-Ki6767の評価においてMRAを28%改善した。
論文 参考訳(メタデータ) (2025-05-11T00:19:22Z) - SCFANet: Style Distribution Constraint Feature Alignment Network For Pathological Staining Translation [0.11999555634662631]
SCFANet(Style Distribution Constraint Feature Alignment Network)
SCFANetはStyle Distribution Constrainer(SDC)とFeature Alignment Learning(FAL)の2つの革新的なモジュールを組み込んでいる。
我々のSCFANetモデルは既存の手法より優れており、H&E画像の正確なIHC画像への変換を実現している。
論文 参考訳(メタデータ) (2025-04-01T07:29:53Z) - GS-TransUNet: Integrated 2D Gaussian Splatting and Transformer UNet for Accurate Skin Lesion Analysis [44.99833362998488]
本稿では,2次元ガウススプラッティングとTransformer UNetアーキテクチャを組み合わせた皮膚癌自動診断手法を提案する。
セグメンテーションと分類の精度は著しく向上した。
この統合は、新しいベンチマークをこの分野に設定し、マルチタスク医療画像解析手法のさらなる研究の可能性を強調している。
論文 参考訳(メタデータ) (2025-02-23T23:28:47Z) - StealthDiffusion: Towards Evading Diffusion Forensic Detection through Diffusion Model [62.25424831998405]
StealthDiffusionは、AI生成した画像を高品質で受け入れがたい敵の例に修正するフレームワークである。
ホワイトボックスとブラックボックスの設定の両方で有効であり、AI生成した画像を高品質な敵の偽造に変換する。
論文 参考訳(メタデータ) (2024-08-11T01:22:29Z) - Structural Cycle GAN for Virtual Immunohistochemistry Staining of Gland
Markers in the Colon [1.741980945827445]
ヘマトキシリンとエオシン(H&E)染色は疾患解析、診断、グレーディングにおいて最も頻繁に用いられる染色の一つである。
病理学者は、特定の構造や細胞を分析するために異種化学染色(IHC)を必要とする。
ヘマトキシリンとエオシン(H&E)染色は疾患解析、診断、グレーディングにおいて最も頻繁に用いられる染色の一つである。
論文 参考訳(メタデータ) (2023-08-25T05:24:23Z) - Texture Characterization of Histopathologic Images Using Ecological
Diversity Measures and Discrete Wavelet Transform [82.53597363161228]
本稿では,病理組織像間でテクスチャを特徴付ける手法を提案する。
2つのHIデータセットに有望な精度で、そのような画像の固有特性を定量化することが可能である。
論文 参考訳(メタデータ) (2022-02-27T02:19:09Z) - Assessing glaucoma in retinal fundus photographs using Deep Feature
Consistent Variational Autoencoders [63.391402501241195]
緑内障は症状が重くなるまで無症状のままでいるため、検出が困難である。
緑内障の早期診断は機能的,構造的,臨床的評価に基づいて行われることが多い。
ディープラーニング手法はこのジレンマを、マーカー識別段階をバイパスし、ハイレベルな情報を分析してデータを分類することで部分的に解決している。
論文 参考訳(メタデータ) (2021-10-04T16:06:49Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
CT画像によるコロナウイルス病2019(COVID-19)の早期かつ正確な重症度評価は,集中治療単位のイベント推定に有効である。
ラベル付きデータを拡張し、分類モデルの一般化能力を向上させるためには、複数のサイトからデータを集約する必要がある。
この課題は、軽度の感染症と重度の感染症の集団不均衡、部位間のドメイン分布の相違、不均一な特徴の存在など、いくつかの課題に直面する。
論文 参考訳(メタデータ) (2021-09-08T07:56:51Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。