論文の概要: What's in the News? Towards Identification of Bias by Commission, Omission, and Source Selection (COSS)
- arxiv url: http://arxiv.org/abs/2508.02540v1
- Date: Mon, 04 Aug 2025 15:47:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 18:25:22.414554
- Title: What's in the News? Towards Identification of Bias by Commission, Omission, and Source Selection (COSS)
- Title(参考訳): ニュースとは何か? : COSSによるバイアスの同定に向けて
- Authors: Anastasia Zhukova, Terry Ruas, Felix Hamborg, Karsten Donnay, Bela Gipp,
- Abstract要約: 本稿では,コミッション,欠落,ソース選択(COSS)によるバイアスの自動同定手法を提案する。
偏見識別に向けたステップの目標と課題を記述し、抽出したテキスト再利用の特徴とパターンを活用する可視化の例を示す。
- 参考スコア(独自算出の注目度): 7.863139688941437
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In a world overwhelmed with news, determining which information comes from reliable sources or how neutral is the reported information in the news articles poses a challenge to news readers. In this paper, we propose a methodology for automatically identifying bias by commission, omission, and source selection (COSS) as a joint three-fold objective, as opposed to the previous work separately addressing these types of bias. In a pipeline concept, we describe the goals and tasks of its steps toward bias identification and provide an example of a visualization that leverages the extracted features and patterns of text reuse.
- Abstract(参考訳): ニュースに圧倒された世界では、信頼できる情報源から来る情報や、ニュース記事の報道された情報がどれほど中立であるかを判断することは、ニュース読者にとって挑戦となる。
本稿では,これらのバイアスを別々に扱う以前の研究とは対照的に,コミッショニング,欠落,ソース選択(COSS)によるバイアスを自動的に識別する手法を提案する。
パイプラインの概念では、バイアス識別に向けたステップの目標とタスクを記述し、抽出したテキスト再利用の特徴とパターンを活用する視覚化の例を示す。
関連論文リスト
- Decoding News Bias: Multi Bias Detection in News Articles [1.433758865948252]
我々は、ニュース記事に存在する様々なバイアスを調査し、大きな言語モデル(LLM)を用いたデータセットを構築した。
提案手法は広スペクトルバイアス検出の重要性を強調し,ニュース記事の完全性向上のための新たな洞察を提供する。
論文 参考訳(メタデータ) (2025-01-05T09:09:53Z) - Identifying Informational Sources in News Articles [109.70475599552523]
我々は、ニュース執筆に使用される情報ソースの、最大かつ最も広範囲にアノテートされたデータセットを構築した。
本稿では,ニュース記事中のソースの構成性を研究するための新しいタスクであるソース予測を導入する。
論文 参考訳(メタデータ) (2023-05-24T08:56:35Z) - Towards Corpus-Scale Discovery of Selection Biases in News Coverage:
Comparing What Sources Say About Entities as a Start [65.28355014154549]
本稿では,大規模ニュースコーパスにおけるニュースコンテンツから直接メディア選択バイアスのパターンを発見するために,スケーラブルなNLPシステムを構築する上での課題について検討する。
我々は,世界519のニュースソースから180万件のニュース記事のコーパスであるNELA-2020のケーススタディを通じて,フレームワークの能力を示す。
論文 参考訳(メタデータ) (2023-04-06T23:36:45Z) - Unveiling the Hidden Agenda: Biases in News Reporting and Consumption [59.55900146668931]
イタリアのワクチン論争に関する6年間のデータセットを構築し、物語と選択バイアスを特定するためにベイジアン潜在空間モデルを採用する。
バイアスとエンゲージメントの間に非線形な関係が見られ、極端な位置へのエンゲージメントが高くなった。
Twitter上でのニュース消費の分析は、同様のイデオロギー的な立場のニュースメディアの間で、一般的なオーディエンスを明らかにしている。
論文 参考訳(メタデータ) (2023-01-14T18:58:42Z) - NeuS: Neutral Multi-News Summarization for Mitigating Framing Bias [54.89737992911079]
様々な政治スペクトルの複数のニュース見出しから中立的な要約を生成する新しい課題を提案する。
最も興味深い観察の1つは、生成モデルは、事実的に不正確なコンテンツや検証不可能なコンテンツだけでなく、政治的に偏ったコンテンツにも幻覚を与えることができることである。
論文 参考訳(メタデータ) (2022-04-11T07:06:01Z) - Newsalyze: Effective Communication of Person-Targeting Biases in News
Articles [8.586057042714698]
本稿では,自然言語理解の最先端手法を組み合わせたバイアス識別システムを提案する。
第2に,非専門家のニュース消費者にニュース記事のバイアスを伝えるために,バイアスに敏感な可視化を考案する。
第3に、私たちの主な貢献は、日々のニュース消費を近似した設定においてバイアス認識を測定する大規模なユーザスタディです。
論文 参考訳(メタデータ) (2021-10-18T10:23:19Z) - Learning Bias-Invariant Representation by Cross-Sample Mutual
Information Minimization [77.8735802150511]
対象タスクが誤用したバイアス情報を除去するために,クロスサンプル対逆脱バイアス法(CSAD)を提案する。
相関測定は, 対向的偏り評価において重要な役割を担い, クロスサンプル型相互情報推定器によって行われる。
我々は,提案手法の最先端手法に対する利点を検証するために,公開データセットの徹底的な実験を行った。
論文 参考訳(メタデータ) (2021-08-11T21:17:02Z) - "Don't quote me on that": Finding Mixtures of Sources in News Articles [85.92467549469147]
各ソースのtextitaffiliationとtextitroleに基づいてソースのオントロジーラベリングシステムを構築します。
これらの属性を名前付きソースに推論し、ニュース記事をこれらのソースの混合物として記述する確率モデルを構築します。
論文 参考訳(メタデータ) (2021-04-19T21:57:11Z) - Mitigating Media Bias through Neutral Article Generation [39.29914845102368]
既存の緩和作業は、複数のニュースアウトレットからの記事を表示し、多様なニュースカバレッジを提供しますが、表示された各記事に固有のバイアスを中和しません。
我々は,複数の偏りのある記事から単一の中性化記事を生成する新しいタスクを提案し,バランスのとれた情報や偏りのない情報へのアクセスをより効率的にする。
論文 参考訳(メタデータ) (2021-04-01T08:37:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。