Meta-RAG on Large Codebases Using Code Summarization
- URL: http://arxiv.org/abs/2508.02611v1
- Date: Mon, 04 Aug 2025 17:01:10 GMT
- Title: Meta-RAG on Large Codebases Using Code Summarization
- Authors: Vali Tawosia, Salwa Alamir, Xiaomo Liu, Manuela Veloso,
- Abstract summary: Large Language Model (LLM) systems have been at the forefront of applied Artificial Intelligence (AI) research in a multitude of domains.<n>We propose a multi-agent system to localize bugs in large pre-existings using information retrieval and LLMs.<n>Our system introduces a novel Retrieval Augmented Generation (RAG) approach, Meta-RAG, where we utilize summaries to condenses by an average of 79.8%, into a compact, structured, natural language representation.
- Score: 11.415083231118142
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Model (LLM) systems have been at the forefront of applied Artificial Intelligence (AI) research in a multitude of domains. One such domain is software development, where researchers have pushed the automation of a number of code tasks through LLM agents. Software development is a complex ecosystem, that stretches far beyond code implementation and well into the realm of code maintenance. In this paper, we propose a multi-agent system to localize bugs in large pre-existing codebases using information retrieval and LLMs. Our system introduces a novel Retrieval Augmented Generation (RAG) approach, Meta-RAG, where we utilize summaries to condense codebases by an average of 79.8\%, into a compact, structured, natural language representation. We then use an LLM agent to determine which parts of the codebase are critical for bug resolution, i.e. bug localization. We demonstrate the usefulness of Meta-RAG through evaluation with the SWE-bench Lite dataset. Meta-RAG scores 84.67 % and 53.0 % for file-level and function-level correct localization rates, respectively, achieving state-of-the-art performance.
Related papers
- Open Source Planning & Control System with Language Agents for Autonomous Scientific Discovery [5.326072982491534]
cmbagent is a system for automation of scientific research tasks.<n>The system is formed by about 30 Large Language Model (LLM) agents.<n>The system is deployed on HuggingFace and will be available on the cloud.
arXiv Detail & Related papers (2025-07-09T20:03:30Z) - Context-Aware Code Wiring Recommendation with LLM-based Agent [4.34559879087055]
Code wiring involves substituting unresolved variables in pasted code with suitable ones from surrounding context.<n>We introduce WIRL, an agent for code wiring framed as a Retrieval-Augmented Generation (RAG) infilling task.<n>We evaluate WIRL on a carefully curated, high-quality dataset consisting of real-world code adaptation scenarios.
arXiv Detail & Related papers (2025-07-02T03:00:23Z) - SweRank: Software Issue Localization with Code Ranking [109.3289316191729]
SweRank is an efficient retrieve-and-rerank framework for software issue localization.<n>We construct SweLoc, a large-scale dataset curated from public GitHub repositories.<n>We show that SweRank achieves state-of-the-art performance, outperforming both prior ranking models and costly agent-based systems.
arXiv Detail & Related papers (2025-05-07T19:44:09Z) - CodeRAG: Supportive Code Retrieval on Bigraph for Real-World Code Generation [69.684886175768]
Large language models (LLMs) have shown promising performance in automated code generation.<n>In this paper, we propose CodeRAG, a retrieval-augmented code generation framework.<n> Experiments show that CodeRAG achieves significant improvements compared to no RAG scenarios.
arXiv Detail & Related papers (2025-04-14T09:51:23Z) - LocAgent: Graph-Guided LLM Agents for Code Localization [25.395102705800916]
LocAgent is a framework that addresses code localization through graph-based representation.<n>Our method with the fine-tuned Qwen-2.5-Coder-Instruct-32B model achieves comparable results to SOTA proprietary models at greatly reduced cost.
arXiv Detail & Related papers (2025-03-12T05:55:01Z) - CodeTree: Agent-guided Tree Search for Code Generation with Large Language Models [106.11371409170818]
Large language models (LLMs) can act as agents with capabilities to self-refine and improve generated code autonomously.
We propose CodeTree, a framework for LLM agents to efficiently explore the search space in different stages of the code generation process.
Specifically, we adopted a unified tree structure to explicitly explore different coding strategies, generate corresponding coding solutions, and subsequently refine the solutions.
arXiv Detail & Related papers (2024-11-07T00:09:54Z) - DOMAINEVAL: An Auto-Constructed Benchmark for Multi-Domain Code Generation [48.11754113512047]
This study includes a code generation benchmark dataset DOMAINEVAL, encompassing six popular domains.
Our pipeline works in a fully automated manner, enabling a push-bottom construction from code repositories into formatted subjects under study.
The contributions of this study include a code generation benchmark dataset DOMAINEVAL, encompassing six popular domains, a fully automated pipeline for constructing code benchmarks, and an identification of the limitations of LLMs in code generation tasks based on their performance on DOMAINEVAL.
arXiv Detail & Related papers (2024-08-23T16:33:58Z) - CodeRAG-Bench: Can Retrieval Augment Code Generation? [78.37076502395699]
We conduct a systematic, large-scale analysis of code generation using retrieval-augmented generation.<n>We first curate a comprehensive evaluation benchmark, CodeRAG-Bench, encompassing three categories of code generation tasks.<n>We examine top-performing models on CodeRAG-Bench by providing contexts retrieved from one or multiple sources.
arXiv Detail & Related papers (2024-06-20T16:59:52Z) - ML-Bench: Evaluating Large Language Models and Agents for Machine Learning Tasks on Repository-Level Code [76.84199699772903]
ML-Bench is a benchmark rooted in real-world programming applications that leverage existing code repositories to perform tasks.
To evaluate both Large Language Models (LLMs) and AI agents, two setups are employed: ML-LLM-Bench for assessing LLMs' text-to-code conversion within a predefined deployment environment, and ML-Agent-Bench for testing autonomous agents in an end-to-end task execution within a Linux sandbox environment.
arXiv Detail & Related papers (2023-11-16T12:03:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.