Actionable Counterfactual Explanations Using Bayesian Networks and Path Planning with Applications to Environmental Quality Improvement
- URL: http://arxiv.org/abs/2508.02634v1
- Date: Mon, 04 Aug 2025 17:20:50 GMT
- Title: Actionable Counterfactual Explanations Using Bayesian Networks and Path Planning with Applications to Environmental Quality Improvement
- Authors: Enrique Valero-Leal, Pedro LarraƱaga, Concha Bielza,
- Abstract summary: We develop a method for actionable counterfactual explanations.<n>Data is only used to learn a density estimator.<n>We test our algorithm with a real-world Environmental Protection Agency dataset.
- Score: 4.041834517339835
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Counterfactual explanations study what should have changed in order to get an alternative result, enabling end-users to understand machine learning mechanisms with counterexamples. Actionability is defined as the ability to transform the original case to be explained into a counterfactual one. We develop a method for actionable counterfactual explanations that, unlike predecessors, does not directly leverage training data. Rather, data is only used to learn a density estimator, creating a search landscape in which to apply path planning algorithms to solve the problem and masking the endogenous data, which can be sensitive or private. We put special focus on estimating the data density using Bayesian networks, demonstrating how their enhanced interpretability is useful in high-stakes scenarios in which fairness is raising concern. Using a synthetic benchmark comprised of 15 datasets, our proposal finds more actionable and simpler counterfactuals than the current state-of-the-art algorithms. We also test our algorithm with a real-world Environmental Protection Agency dataset, facilitating a more efficient and equitable study of policies to improve the quality of life in United States of America counties. Our proposal captures the interaction of variables, ensuring equity in decisions, as policies to improve certain domains of study (air, water quality, etc.) can be detrimental in others. In particular, the sociodemographic domain is often involved, where we find important variables related to the ongoing housing crisis that can potentially have a severe negative impact on communities.
Related papers
- MEXGEN: An Effective and Efficient Information Gain Approximation for Information Gathering Path Planning [3.195234044113248]
Planning algorithms for autonomous robots need to solve sequential decision making problems under uncertainty.
We develop a computationally efficient and effective approximation for the difficult problem of predicting the likely sensor measurements from uncertain belief states.
We demonstrate improved performance gains in radio-source tracking and localization problems using extensive simulated and field experiments with a multirotor aerial robot.
arXiv Detail & Related papers (2024-05-04T08:09:16Z) - Geospatial Disparities: A Case Study on Real Estate Prices in Paris [0.3495246564946556]
We propose a toolkit for identifying and mitigating biases arising from geospatial data.
We incorporate an ordinal regression case with spatial attributes, deviating from the binary classification focus.
Illustrating our methodology, we showcase practical applications and scrutinize the implications of choosing geographical aggregation levels for fairness and calibration measures.
arXiv Detail & Related papers (2024-01-29T14:53:14Z) - Fairness Explainability using Optimal Transport with Applications in
Image Classification [0.46040036610482665]
We propose a comprehensive approach to uncover the causes of discrimination in Machine Learning applications.
We leverage Wasserstein barycenters to achieve fair predictions and introduce an extension to pinpoint bias-associated regions.
This allows us to derive a cohesive system which uses the enforced fairness to measure each features influence emphon the bias.
arXiv Detail & Related papers (2023-08-22T00:10:23Z) - Data Quality in Imitation Learning [15.939363481618738]
In offline learning for robotics, we simply lack internet scale data, and so high quality datasets are a necessity.
This is especially true in imitation learning (IL), a sample efficient paradigm for robot learning using expert demonstrations.
In this work, we take the first step toward formalizing data quality for imitation learning through the lens of distribution shift.
arXiv Detail & Related papers (2023-06-04T18:48:32Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
We propose D-BIAS, a visual interactive tool that embodies human-in-the-loop AI approach for auditing and mitigating social biases.
A user can detect the presence of bias against a group by identifying unfair causal relationships in the causal network.
For each interaction, say weakening/deleting a biased causal edge, the system uses a novel method to simulate a new (debiased) dataset.
arXiv Detail & Related papers (2022-08-10T03:41:48Z) - Exploring the Trade-off between Plausibility, Change Intensity and
Adversarial Power in Counterfactual Explanations using Multi-objective
Optimization [73.89239820192894]
We argue that automated counterfactual generation should regard several aspects of the produced adversarial instances.
We present a novel framework for the generation of counterfactual examples.
arXiv Detail & Related papers (2022-05-20T15:02:53Z) - Lifelong Unsupervised Domain Adaptive Person Re-identification with
Coordinated Anti-forgetting and Adaptation [127.6168183074427]
We propose a new task, Lifelong Unsupervised Domain Adaptive (LUDA) person ReID.
This is challenging because it requires the model to continuously adapt to unlabeled data of the target environments.
We design an effective scheme for this task, dubbed CLUDA-ReID, where the anti-forgetting is harmoniously coordinated with the adaptation.
arXiv Detail & Related papers (2021-12-13T13:19:45Z) - Fair Representation Learning using Interpolation Enabled Disentanglement [9.043741281011304]
We propose a novel method to address two key issues: (a) Can we simultaneously learn fair disentangled representations while ensuring the utility of the learned representation for downstream tasks, and (b)Can we provide theoretical insights into when the proposed approach will be both fair and accurate.
To address the former, we propose the method FRIED, Fair Representation learning using Interpolation Enabled Disentanglement.
arXiv Detail & Related papers (2021-07-31T17:32:12Z) - Approximate Regions of Attraction in Learning with Decision-Dependent
Distributions [11.304363655760513]
We analyze repeated risk minimization as the trajectories of the gradient flows of performative risk minimization.
We provide conditions to characterize the region of attraction for the various equilibria in this setting.
We introduce the notion of performative alignment, which provides a geometric condition on the convergence of repeated risk minimization to performative risk minimizers.
arXiv Detail & Related papers (2021-06-30T18:38:08Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
dataset bias is one of the prevailing causes of unfairness in machine learning.
We study whether models trained with uncertainty-based ALs are fairer in their decisions with respect to a protected class.
We also explore the interaction of algorithmic fairness methods such as gradient reversal (GRAD) and BALD.
arXiv Detail & Related papers (2021-04-14T14:20:22Z) - Privacy-Constrained Policies via Mutual Information Regularized Policy Gradients [54.98496284653234]
We consider the task of training a policy that maximizes reward while minimizing disclosure of certain sensitive state variables through the actions.
We solve this problem by introducing a regularizer based on the mutual information between the sensitive state and the actions.
We develop a model-based estimator for optimization of privacy-constrained policies.
arXiv Detail & Related papers (2020-12-30T03:22:35Z) - Offline Learning for Planning: A Summary [0.0]
Training of autonomous agents often requires expensive and unsafe trial-and-error interactions with the environment.
Data sets containing recorded experiences of intelligent agents performing various tasks are accessible on the internet.
In this paper we adumbrate the ideas motivating the development of the state-of-the-art offline learning baselines.
arXiv Detail & Related papers (2020-10-05T11:41:11Z) - Provably Efficient Causal Reinforcement Learning with Confounded
Observational Data [135.64775986546505]
We study how to incorporate the dataset (observational data) collected offline, which is often abundantly available in practice, to improve the sample efficiency in the online setting.
We propose the deconfounded optimistic value iteration (DOVI) algorithm, which incorporates the confounded observational data in a provably efficient manner.
arXiv Detail & Related papers (2020-06-22T14:49:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.