An Efficient Continuous-Time MILP for Integrated Aircraft Hangar Scheduling and Layout
- URL: http://arxiv.org/abs/2508.02640v1
- Date: Mon, 04 Aug 2025 17:25:36 GMT
- Title: An Efficient Continuous-Time MILP for Integrated Aircraft Hangar Scheduling and Layout
- Authors: Shayan Farhang Pazhooh, Hossein Shams Shemirani,
- Abstract summary: This paper introduces a novel continuous-time mixed-integer linear programming (MILP) model to solve this integrated-temporal problem.<n>The model solves instances with up to 25 aircraft to proven optimality, often in mere seconds, and for large-scale cases of up to 40 aircraft, delivers high-quality solutions within known optimality gaps.<n>In all tested scenarios, the framework's substantial economic benefits and provides valuable managerial insights into the trade-off between solution time and optimality.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Efficient management of aircraft maintenance hangars is a critical operational challenge, involving complex, interdependent decisions regarding aircraft scheduling and spatial allocation. This paper introduces a novel continuous-time mixed-integer linear programming (MILP) model to solve this integrated spatio-temporal problem. By treating time as a continuous variable, our formulation overcomes the scalability limitations of traditional discrete-time approaches. The performance of the exact model is benchmarked against a constructive heuristic, and its practical applicability is demonstrated through a custom-built visualization dashboard. Computational results are compelling: the model solves instances with up to 25 aircraft to proven optimality, often in mere seconds, and for large-scale cases of up to 40 aircraft, delivers high-quality solutions within known optimality gaps. In all tested scenarios, the resulting solutions consistently and significantly outperform the heuristic, which highlights the framework's substantial economic benefits and provides valuable managerial insights into the trade-off between solution time and optimality.
Related papers
- Generalized Linear Bandits: Almost Optimal Regret with One-Pass Update [60.414548453838506]
We study the generalized linear bandit (GLB) problem, a contextual multi-armed bandit framework that extends the classical linear model by incorporating a non-linear link function.<n>GLBs are widely applicable to real-world scenarios, but their non-linear nature introduces significant challenges in achieving both computational and statistical efficiency.<n>We propose a jointly efficient algorithm that attains a nearly optimal regret bound with $mathcalO(1)$ time and space complexities per round.
arXiv Detail & Related papers (2025-07-16T02:24:21Z) - Opportunistic Collaborative Planning with Large Vision Model Guided Control and Joint Query-Service Optimization [74.92515821144484]
Navigating autonomous vehicles in open scenarios is a challenge due to the difficulties in handling unseen objects.<n>Existing solutions either rely on small models that struggle with generalization or large models that are resource-intensive.<n>This paper proposes opportunistic collaborative planning (OCP), which seamlessly integrates efficient local models with powerful cloud models.
arXiv Detail & Related papers (2025-04-25T04:07:21Z) - DiffPO: Diffusion-styled Preference Optimization for Efficient Inference-Time Alignment of Large Language Models [50.32663816994459]
Diffusion-styled Preference Optimization (model) provides an efficient and policy-agnostic solution for aligning LLMs with humans.<n>modelavoids the time latency associated with token-level generation.<n>Experiments on AlpacaEval 2, MT-bench, and HH-RLHF demonstrate that modelachieves superior alignment performance across various settings.
arXiv Detail & Related papers (2025-03-06T09:21:54Z) - A Graph-Enhanced Deep-Reinforcement Learning Framework for the Aircraft Landing Problem [0.0]
The Aircraft Landing Problem (ALP) is one of the challenging problems in aircraft transportation and management.<n>This paper presents a novel deep reinforcement learning framework that combines graph neural networks with actor-critic architectures to address the ALP.<n>Results show that the trained algorithm can be tested on different problem sets and the results are competitive to operation research algorithms.
arXiv Detail & Related papers (2025-02-18T08:02:17Z) - A Hybrid Tabu Scatter Search Algorithm for Simulation-Based Optimization of Multi-Objective Runway Operations Scheduling [0.0]
dissertation addresses the challenge of air traffic flow management by proposing a simulation-based optimization (SbO) approach for runway operations scheduling.<n>The goal is to optimize airport capacity utilization while minimizing delays, fuel consumption, and environmental impacts.<n>The proposed SbO framework integrates a discrete-event simulation model to handle runway conditions and a hybrid Tabu-Scatter Search algorithm to identify optimal solutions.
arXiv Detail & Related papers (2025-02-08T14:42:05Z) - Temporal Feature Matters: A Framework for Diffusion Model Quantization [105.3033493564844]
Diffusion models rely on the time-step for the multi-round denoising.<n>We introduce a novel quantization framework that includes three strategies.<n>This framework preserves most of the temporal information and ensures high-quality end-to-end generation.
arXiv Detail & Related papers (2024-07-28T17:46:15Z) - A Graph-based Adversarial Imitation Learning Framework for Reliable & Realtime Fleet Scheduling in Urban Air Mobility [5.19664437943693]
This paper presents a comprehensive optimization formulation of the fleet scheduling problem.
It also identifies the need for alternate solution approaches.
The new imitative approach achieves better mean performance and remarkable improvement in the case of unseen worst-case scenarios.
arXiv Detail & Related papers (2024-07-16T18:51:24Z) - OTClean: Data Cleaning for Conditional Independence Violations using
Optimal Transport [51.6416022358349]
sys is a framework that harnesses optimal transport theory for data repair under Conditional Independence (CI) constraints.
We develop an iterative algorithm inspired by Sinkhorn's matrix scaling algorithm, which efficiently addresses high-dimensional and large-scale data.
arXiv Detail & Related papers (2024-03-04T18:23:55Z) - A Hierarchical Temporal Planning-Based Approach for Dynamic Hoist
Scheduling Problems [11.66506213335498]
Hoist scheduling has become a bottleneck in electroplating industry applications with the development of autonomous devices.
We formulate the hoist scheduling problem as a new temporal planning problem in the form of adapted PDDL.
We provide a collection of real-life benchmark instances that can be used to evaluate solution methods for the problem.
arXiv Detail & Related papers (2022-12-11T05:30:44Z) - Efficient Temporal Piecewise-Linear Numeric Planning with Lazy
Consistency Checking [4.834203844100679]
We propose a set of techniques that allow the planner to compute LP consistency checks lazily where possible.
We also propose an algorithm to perform duration-dependent goal checking more selectively.
The resultant planner is not only more efficient, but outperforms most state-of-the-art temporal-numeric and hybrid planners.
arXiv Detail & Related papers (2021-05-21T07:36:54Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.