論文の概要: Physics-guided denoiser network for enhanced additive manufacturing data quality
- arxiv url: http://arxiv.org/abs/2508.02712v1
- Date: Thu, 31 Jul 2025 05:21:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-06 18:18:55.574263
- Title: Physics-guided denoiser network for enhanced additive manufacturing data quality
- Title(参考訳): 付加データ品質向上のための物理誘導型デノイザネットワーク
- Authors: Pallock Halder, Satyajit Mojumder,
- Abstract要約: 本稿では,エネルギーモデルとフィッシャースコアの正規化を統合した物理インフォームド・デノナイズ・フレームワークを提案する。
次に,レーザーパウダーベッド融合(LPBF)添加製造実験から得られた実熱放射データにこの枠組みを適用した。
提案手法はベースラインニューラルネットワークデノイザーより優れており, LPBF処理条件下でのノイズを効果的に低減する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Modern engineering systems are increasingly equipped with sensors for real-time monitoring and decision-making. However, the data collected by these sensors is often noisy and difficult to interpret, limiting its utility for control and diagnostics. In this work, we propose a physics-informed denoising framework that integrates energy-based model and Fisher score regularization to jointly reduce data noise and enforce physical consistency with a physics-based model. The approach is first validated on benchmark problems, including the simple harmonic oscillator, Burgers' equation, and Laplace's equation, across varying noise levels. We then apply the denoising framework to real thermal emission data from laser powder bed fusion (LPBF) additive manufacturing experiments, using a trained Physics-Informed Neural Network (PINN) surrogate model of the LPBF process to guide denoising. Results show that the proposed method outperforms baseline neural network denoisers, effectively reducing noise under a range of LPBF processing conditions. This physics-guided denoising strategy enables robust, real-time interpretation of low-cost sensor data, facilitating predictive control and improved defect mitigation in additive manufacturing.
- Abstract(参考訳): 現代のエンジニアリングシステムには、リアルタイム監視と意思決定のためのセンサーがますます備わっている。
しかし、これらのセンサーによって収集されたデータは、しばしばノイズが多く、解釈が困難であり、制御と診断にその有用性を制限している。
本研究では,エネルギーベースモデルとフィッシャースコアの正則化を統合した物理インフォームド・デノケーション・フレームワークを提案する。
このアプローチはまず、単純な高調波発振器、バーガースの方程式、ラプラスの方程式など、様々なノイズレベルにわたるベンチマーク問題で検証される。
次に、LPBFプロセスのトレーニングされた物理情報ニューラルネットワーク(PINN)サロゲートモデルを用いて、レーザー粉末層融合(LPBF)添加物製造実験から得られる実際の熱放射データに適用し、デノナイジングを誘導する。
提案手法はベースラインニューラルネットワークデノイザーより優れており, LPBF処理条件下でのノイズを効果的に低減する。
この物理誘導型 denoising 戦略により、低コストのセンサデータの堅牢でリアルタイムな解釈が可能となり、予測制御が容易になり、加法製造における欠陥軽減が向上する。
関連論文リスト
- Unsupervised CP-UNet Framework for Denoising DAS Data with Decay Noise [13.466125373185399]
分散音響センサ(DAS)技術は光ファイバーケーブルを利用して音響信号を検出する。
DASは、ジオフォンよりも低い信号対雑音比(S/N)を示す。
これにより、S/Nの低減は、反転と解釈を含むデータ解析に悪影響を及ぼす。
論文 参考訳(メタデータ) (2025-02-19T03:09:49Z) - Impact of Noisy Supervision in Foundation Model Learning [91.56591923244943]
本論文は、事前学習データセットにおけるノイズの性質を包括的に理解し分析する最初の研究である。
雑音の悪影響を緩和し、一般化を改善するため、特徴空間に適応するチューニング法(NMTune)を提案する。
論文 参考訳(メタデータ) (2024-03-11T16:22:41Z) - Physics-Informed Data Denoising for Real-Life Sensing Systems [30.80700186287102]
ノイズセンサのための物理インフォームド・デノナイジング・モデルを開発した。
本手法では, 低コストノイズセンサのデータをリアルタイム(4ms/1s)にデノマイズすることができる。
論文 参考訳(メタデータ) (2023-11-12T21:25:56Z) - Physics-guided Noise Neural Proxy for Practical Low-light Raw Image
Denoising [22.11250276261829]
近年,低照度生画像復調訓練の主流は,合成データの利用に移行している。
実世界のセンサのノイズ分布を特徴付けるノイズモデリングは,合成データの有効性と実用性に大きな影響を及ぼす。
そこで本研究では,実データではなく,暗黒フレームからノイズモデルを学習し,データ依存を分解する手法を提案する。
論文 参考訳(メタデータ) (2023-10-13T14:14:43Z) - Learning Provably Robust Estimators for Inverse Problems via Jittering [51.467236126126366]
簡単な正規化手法であるジッタリングが,逆問題に対する最悪ケース頑健な推定器の学習に有効かどうかを検討する。
ジッタリングは最悪の場合のロバスト性を大幅に向上させるが,デノイング以上の逆問題に最適であることを示す。
論文 参考訳(メタデータ) (2023-07-24T14:19:36Z) - Realistic Noise Synthesis with Diffusion Models [44.404059914652194]
ディープラーニングモデルには、大規模な実世界のトレーニングデータが必要です。
本稿では,これらの課題に対処するために拡散モデルを用いた新しい実音合成拡散器(RNSD)法を提案する。
論文 参考訳(メタデータ) (2023-05-23T12:56:01Z) - On the uncertainty analysis of the data-enabled physics-informed neural
network for solving neutron diffusion eigenvalue problem [4.0275959184316825]
いくつかの観点から中性子拡散固有値問題の計算におけるDEPINNの性能について検討する。
ノイズの影響を低減し,ノイズ先行データの利用を改善するために,革新的な区間損失関数を提案する。
本稿では, 原子炉物理の実用化に向けた改良型DEPINNの実現可能性を確認する。
論文 参考訳(メタデータ) (2023-03-15T08:59:03Z) - Digital noise spectroscopy with a quantum sensor [57.53000001488777]
本稿では,ノイズプロセスの自己相関をサンプリングし,再構成するための量子センシングプロトコルを実験的に導入し,実証する。
ウォルシュノイズ分光法はスピンフリップパルスの単純な配列を利用してディジタルフィルタの完全基底を生成する。
ダイヤモンド中の単一窒素空孔中心の電子スピン上での核スピン浴により生じる有効磁場の自己相関関数を実験的に再構成した。
論文 参考訳(メタデータ) (2022-12-19T02:19:35Z) - Pre-training via Denoising for Molecular Property Prediction [53.409242538744444]
本稿では,3次元分子構造の大規模データセットを平衡に利用した事前学習手法について述べる。
近年のノイズレギュラー化の進展に触発されて, 事前学習の目的は, 雑音の除去に基づくものである。
論文 参考訳(メタデータ) (2022-05-31T22:28:34Z) - Removing Noise from Extracellular Neural Recordings Using Fully
Convolutional Denoising Autoencoders [62.997667081978825]
ノイズの多いマルチチャネル入力からクリーンなニューロン活動信号を生成することを学習する完全畳み込みデノイングオートエンコーダを提案する。
シミュレーションデータを用いた実験結果から,提案手法はノイズ崩壊型ニューラルネットワークの品質を大幅に向上させることができることがわかった。
論文 参考訳(メタデータ) (2021-09-18T14:51:24Z) - Learning Model-Blind Temporal Denoisers without Ground Truths [46.778450578529814]
合成データで訓練されたデノイザーは、未知のノイズの多様性に対処できないことが多い。
従来の画像ベース手法は、ビデオデノイザに直接適用した場合、ノイズが過度に収まる。
本稿では,これらの課題に対処する上で有効な,ビデオ・デノベーション・ネットワークの汎用フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-07T07:19:48Z) - Robust Processing-In-Memory Neural Networks via Noise-Aware
Normalization [26.270754571140735]
PIM加速器は、しばしば物理的成分の固有のノイズに悩まされる。
雑音設定に対してロバストなニューラルネットワーク性能を実現するためのノイズ非依存手法を提案する。
論文 参考訳(メタデータ) (2020-07-07T06:51:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。