ECGTwin: Personalized ECG Generation Using Controllable Diffusion Model
- URL: http://arxiv.org/abs/2508.02720v1
- Date: Fri, 01 Aug 2025 02:58:11 GMT
- Title: ECGTwin: Personalized ECG Generation Using Controllable Diffusion Model
- Authors: Yongfan Lai, Bo Liu, Xinyan Guan, Qinghao Zhao, Hongyan Li, Shenda Hong,
- Abstract summary: We present ECGTwin, a two-stage framework designed to address these challenges.<n>In the first stage, an Individual Base Extractor trained via contrastive learning robustly captures personal features from a reference ECG.<n>In the second stage, extracted individual features, along with a target cardiac condition, are integrated into the diffusion-based generation process.
- Score: 15.940566457895061
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Personalized electrocardiogram (ECG) generation is to simulate a patient's ECG digital twins tailored to specific conditions. It has the potential to transform traditional healthcare into a more accurate individualized paradigm, while preserving the key benefits of conventional population-level ECG synthesis. However, this promising task presents two fundamental challenges: extracting individual features without ground truth and injecting various types of conditions without confusing generative model. In this paper, we present ECGTwin, a two-stage framework designed to address these challenges. In the first stage, an Individual Base Extractor trained via contrastive learning robustly captures personal features from a reference ECG. In the second stage, the extracted individual features, along with a target cardiac condition, are integrated into the diffusion-based generation process through our novel AdaX Condition Injector, which injects these signals via two dedicated and specialized pathways. Both qualitative and quantitative experiments have demonstrated that our model can not only generate ECG signals of high fidelity and diversity by offering a fine-grained generation controllability, but also preserving individual-specific features. Furthermore, ECGTwin shows the potential to enhance ECG auto-diagnosis in downstream application, confirming the possibility of precise personalized healthcare solutions.
Related papers
- Heartcare Suite: Multi-dimensional Understanding of ECG with Raw Multi-lead Signal Modeling [50.58126509704037]
Heartcare Suite is a framework for fine-grained electrocardiogram (ECG) understanding.<n>Heartcare-220K is a high-quality, structured, and comprehensive multimodal ECG dataset.<n>Heartcare-Bench is a benchmark to guide the optimization of Medical Multimodal Large Language Models (Med-MLLMs) in ECG scenarios.
arXiv Detail & Related papers (2025-06-06T07:56:41Z) - A Vector-Quantized Foundation Model for Patient Behavior Monitoring [43.02353546717171]
This paper introduces a novel foundation model based on a modified vector quantized variational autoencoder, specifically designed to process real-world data from smartphones and wearable devices.<n>We leveraged the discrete latent representation of this model to effectively perform two downstream tasks, suicide risk assessment and emotional state prediction, on different held-out clinical cohorts without the need of fine-tuning.
arXiv Detail & Related papers (2025-03-19T14:01:16Z) - GEM: Empowering MLLM for Grounded ECG Understanding with Time Series and Images [43.65650710265957]
We introduce GEM, the first MLLM unifying ECG time series, 12-lead ECG images and text for grounded and clinician-aligned ECG interpretation.<n> GEM enables feature-grounded analysis, evidence-driven reasoning, and a clinician-like diagnostic process through three core innovations.<n>We propose the Grounded ECG task, a clinically motivated benchmark designed to assess the MLLM's capability in grounded ECG understanding.
arXiv Detail & Related papers (2025-03-08T05:48:53Z) - Generation of Drug-Induced Cardiac Reactions towards Virtual Clinical Trials [27.928421986311005]
Drug-Aware Diffusion Model (DADM) is a novel model for simulating drug-induced electrocardiogram (ECG) alterations.<n>EPK is used to adaptively constrain the morphology of the generated ECGs.<n>ControlNet is proposed to incorporate demographic and drug data, simulating individual drug reactions.
arXiv Detail & Related papers (2025-02-11T06:50:33Z) - SSSD-ECG-nle: New Label Embeddings with Structured State-Space Models for ECG generation [0.0]
Diffusion models have made significant progress in recent years, creating the possibility for synthesizing data comparable to the real one.
We propose the SSSD-ECG-nle architecture based on SSSD-ECG with a modified conditioning mechanism and demonstrate its efficiency on downstream tasks.
arXiv Detail & Related papers (2024-07-15T16:31:25Z) - Personalized Heart Disease Detection via ECG Digital Twin Generation [12.652722066483172]
Heart diseases rank among the leading causes of global mortality.
We present an innovative prospective learning approach for personalized heart disease detection.
Our approach ensures robust privacy protection, safeguarding patient data.
arXiv Detail & Related papers (2024-04-17T08:40:54Z) - Improving Diffusion Models for ECG Imputation with an Augmented Template
Prior [43.6099225257178]
noisy and poor-quality recordings are a major issue for signals collected using mobile health systems.
Recent studies have explored the imputation of missing values in ECG with probabilistic time-series models.
We present a template-guided denoising diffusion probabilistic model (DDPM), PulseDiff, which is conditioned on an informative prior for a range of health conditions.
arXiv Detail & Related papers (2023-10-24T11:34:15Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
evaluating canine electrocardiograms (ECG) require skilled veterinarians.
Current availability of veterinary cardiologists for ECG interpretation and diagnostic support is limited.
We implement a deep convolutional neural network (CNN) approach for classifying canine electrocardiogram sequences as either normal or abnormal.
arXiv Detail & Related papers (2023-05-17T09:06:39Z) - Text-to-ECG: 12-Lead Electrocardiogram Synthesis conditioned on Clinical
Text Reports [6.659609788411503]
We present a text-to-ECG task, in which textual inputs are used to produce ECG outputs.
We propose Auto-TTE, an autoregressive generative model conditioned on clinical text reports to synthesize 12-lead ECGs.
arXiv Detail & Related papers (2023-03-09T11:58:38Z) - ECGAN: Self-supervised generative adversarial network for
electrocardiography [11.460692362624533]
High-quality synthetic data can support the development of effective predictive models for biomedical tasks.
These limitations, for instance, negatively impact open access to electrocardiography datasets about arrhythmias.
This work introduces a self-supervised approach to the generation of synthetic electrocardiography time series.
arXiv Detail & Related papers (2023-01-23T15:48:02Z) - Factored Attention and Embedding for Unstructured-view Topic-related
Ultrasound Report Generation [70.7778938191405]
We propose a novel factored attention and embedding model (termed FAE-Gen) for the unstructured-view topic-related ultrasound report generation.
The proposed FAE-Gen mainly consists of two modules, i.e., view-guided factored attention and topic-oriented factored embedding, which capture the homogeneous and heterogeneous morphological characteristic across different views.
arXiv Detail & Related papers (2022-03-12T15:24:03Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
Existing databases for ECG delineation are small, being insufficient in size and in the array of pathological conditions they represent.
This article delves has two main contributions. First, a pseudo-synthetic data generation algorithm was developed, based in probabilistically composing ECG traces given "pools" of fundamental segments, as cropped from the original databases, and a set of rules for their arrangement into coherent synthetic traces.
Second, two novel segmentation-based loss functions have been developed, which attempt at enforcing the prediction of an exact number of independent structures and at producing closer segmentation boundaries by focusing on a reduced number of samples.
arXiv Detail & Related papers (2021-11-25T10:11:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.