Generation of Drug-Induced Cardiac Reactions towards Virtual Clinical Trials
- URL: http://arxiv.org/abs/2502.07297v2
- Date: Sun, 18 May 2025 08:05:51 GMT
- Title: Generation of Drug-Induced Cardiac Reactions towards Virtual Clinical Trials
- Authors: Qian Shao, Bang Du, Zepeng Li, Qiyuan Chen, Hongxia Xu, Jimeng Sun, Jian Wu, Jintai Chen,
- Abstract summary: Drug-Aware Diffusion Model (DADM) is a novel model for simulating drug-induced electrocardiogram (ECG) alterations.<n>EPK is used to adaptively constrain the morphology of the generated ECGs.<n>ControlNet is proposed to incorporate demographic and drug data, simulating individual drug reactions.
- Score: 27.928421986311005
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Clinical trials remain critical in cardiac drug development but face high failure rates due to efficacy limitations and safety risks, incurring substantial costs. In-silico trial methodologies, particularly generative models simulating drug-induced electrocardiogram (ECG) alterations, offer a potential solution to mitigate these challenges. While existing models show progress in ECG synthesis, their constrained fidelity and inability to characterize individual-specific pharmacological response patterns fundamentally limit clinical translatability. To address these issues, we propose a novel Drug-Aware Diffusion Model (DADM). Specifically, we construct a set of ordinary differential equations to provide external physical knowledge (EPK) of the realistic ECG morphology. The EPK is used to adaptively constrain the morphology of the generated ECGs through a dynamic cross-attention (DCA) mechanism. Furthermore, we propose an extension of ControlNet to incorporate demographic and drug data, simulating individual drug reactions. Compared to the other eight state-of-the-art (SOTA) ECG generative models: 1) Quantitative and expert evaluation demonstrate that DADM generates ECGs with superior fidelity; 2) Comparative results on two real-world databases covering 8 types of drug regimens verify that DADM can more accurately simulate drug-induced changes in ECGs, improving the accuracy by at least 5.79% and recall by 8%. In addition, the ECGs generated by DADM can also enhance model performance in downstream drug-effect classification tasks.
Related papers
- ECGTwin: Personalized ECG Generation Using Controllable Diffusion Model [15.940566457895061]
We present ECGTwin, a two-stage framework designed to address these challenges.<n>In the first stage, an Individual Base Extractor trained via contrastive learning robustly captures personal features from a reference ECG.<n>In the second stage, extracted individual features, along with a target cardiac condition, are integrated into the diffusion-based generation process.
arXiv Detail & Related papers (2025-08-01T02:58:11Z) - Improving Myocardial Infarction Detection via Synthetic ECG Pretraining [0.0]
Myocardial infarction is a major cause of death globally, and accurate early diagnosis from electrocardiograms (ECGs) remains a clinical priority.<n>Deep learning models have shown promise for automated ECG interpretation, but require large amounts of labeled data.<n>We propose a physiology-aware pipeline that synthesizes 12-lead ECGs with tunable MI morphology and realistic noise.
arXiv Detail & Related papers (2025-06-29T14:29:55Z) - Adaptable Cardiovascular Disease Risk Prediction from Heterogeneous Data using Large Language Models [70.64969663547703]
AdaCVD is an adaptable CVD risk prediction framework built on large language models extensively fine-tuned on over half a million participants from the UK Biobank.<n>It addresses key clinical challenges across three dimensions: it flexibly incorporates comprehensive yet variable patient information; it seamlessly integrates both structured data and unstructured text; and it rapidly adapts to new patient populations using minimal additional data.
arXiv Detail & Related papers (2025-05-30T14:42:02Z) - Phenotype-Guided Generative Model for High-Fidelity Cardiac MRI Synthesis: Advancing Pretraining and Clinical Applications [9.113410118160438]
We present Cardiac Phenotype-Guided CMR Generation (CPGG), a novel approach for generating diverse CMR data.<n>CPGG framework consists of two stages: in the first stage, a generative model is trained using cardiac phenotypes derived from CMR data.<n>In the second stage, a masked autoregressive diffusion model, conditioned on these phenotypes, generates high-fidelity CMR cine sequences.
arXiv Detail & Related papers (2025-05-06T11:06:41Z) - Conditional Electrocardiogram Generation Using Hierarchical Variational Autoencoders [0.0]
We propose a conditional Nouveau VAE model for ECG signal generation (cNVAE-ECG)<n>This paper proposes the publicly available conditional Nouveau VAE model for ECG signal generation (cNVAE-ECG)
arXiv Detail & Related papers (2025-03-03T13:30:36Z) - Finetuning and Quantization of EEG-Based Foundational BioSignal Models on ECG and PPG Data for Blood Pressure Estimation [53.2981100111204]
Photoplethysmography and electrocardiography can potentially enable continuous blood pressure (BP) monitoring.<n>Yet accurate and robust machine learning (ML) models remains challenging due to variability in data quality and patient-specific factors.<n>In this work, we investigate whether a model pre-trained on one modality can effectively be exploited to improve the accuracy of a different signal type.<n>Our approach achieves near state-of-the-art accuracy for diastolic BP and surpasses by 1.5x the accuracy of prior works for systolic BP.
arXiv Detail & Related papers (2025-02-10T13:33:12Z) - Synthetic Time Series Data Generation for Healthcare Applications: A PCG Case Study [43.28613210217385]
We employ and compare three state-of-the-art generative models to generate PCG data.<n>Our results demonstrate that the generated PCG data closely resembles the original datasets.<n>In our future work, we plan to incorporate this method into a data augmentation pipeline to synthesize abnormal PCG signals with heart murmurs.
arXiv Detail & Related papers (2024-12-17T18:07:40Z) - KITE-DDI: A Knowledge graph Integrated Transformer Model for accurately predicting Drug-Drug Interaction Events from Drug SMILES and Biomedical Knowledge Graph [0.11049608786515838]
Drug-Drug Interactions (DDI) can cause significant bodily injury and even death.<n>Most contemporary research for predicting DDI events relies on either information from Biomedical Knowledge graphs (KG) or drug SMILES.<n>In this study, we propose a KG-integrated Transformer architecture to generate an end-to-end fully automated Machine Learning pipeline.
arXiv Detail & Related papers (2024-12-08T00:49:57Z) - SSSD-ECG-nle: New Label Embeddings with Structured State-Space Models for ECG generation [0.0]
Diffusion models have made significant progress in recent years, creating the possibility for synthesizing data comparable to the real one.
We propose the SSSD-ECG-nle architecture based on SSSD-ECG with a modified conditioning mechanism and demonstrate its efficiency on downstream tasks.
arXiv Detail & Related papers (2024-07-15T16:31:25Z) - Regressor-free Molecule Generation to Support Drug Response Prediction [83.25894107956735]
Conditional generation based on the target IC50 score can obtain a more effective sampling space.
Regressor-free guidance combines a diffusion model's score estimation with a regression controller model's gradient based on number labels.
arXiv Detail & Related papers (2024-05-23T13:22:17Z) - drGAT: Attention-Guided Gene Assessment of Drug Response Utilizing a Drug-Cell-Gene Heterogeneous Network [9.637695046701493]
drGAT is a graph deep learning model that can predict sensitivity to drugs.
drGAT has superior performance over existing models, achieving 78% accuracy and 76% F1 score for 269 DNA-damaging compounds.
Our method can be used to accurately predict sensitivity to drugs and may be useful in the identification of biomarkers relating to the treatment of cancer patients.
arXiv Detail & Related papers (2024-05-14T22:16:52Z) - CardioGenAI: A Machine Learning-Based Framework for Re-Engineering Drugs for Reduced hERG Liability [0.0]
We present CardioGenAI, a machine learning-based framework for re-engineering both developmental and commercially available drugs for reduced hERG activity.
We applied the complete framework to pimozide, an FDA-approved antipsychotic agent, and generated 100 refined candidates.
We envision that this method can effectively be applied to developmental compounds exhibiting hERG liabilities to provide a means of rescuing drug development programs that have stalled due to hERG-related safety concerns.
arXiv Detail & Related papers (2024-03-12T13:12:24Z) - Improving Diffusion Models for ECG Imputation with an Augmented Template
Prior [43.6099225257178]
noisy and poor-quality recordings are a major issue for signals collected using mobile health systems.
Recent studies have explored the imputation of missing values in ECG with probabilistic time-series models.
We present a template-guided denoising diffusion probabilistic model (DDPM), PulseDiff, which is conditioned on an informative prior for a range of health conditions.
arXiv Detail & Related papers (2023-10-24T11:34:15Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Drug Interaction Vectors Neural Network: DrIVeNN [0.7624669864625037]
Polypharmacy is the concurrent use of multiple drugs to treat a single condition.
Many serious ADEs associated with polypharmacy only become known after the drugs are in use.
It is impractical to test every possible drug combination during clinical trials.
arXiv Detail & Related papers (2023-08-26T14:24:41Z) - ECGAN: Self-supervised generative adversarial network for
electrocardiography [11.460692362624533]
High-quality synthetic data can support the development of effective predictive models for biomedical tasks.
These limitations, for instance, negatively impact open access to electrocardiography datasets about arrhythmias.
This work introduces a self-supervised approach to the generation of synthetic electrocardiography time series.
arXiv Detail & Related papers (2023-01-23T15:48:02Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
Drug-Target Affinity (DTA) is of vital importance in early-stage drug discovery.
wet experiments remain the most reliable method, but they are time-consuming and resource-intensive.
Existing methods have primarily focused on developing techniques based on the available DTA data, without adequately addressing the data scarcity issue.
We present the SSM-DTA framework, which incorporates three simple yet highly effective strategies.
arXiv Detail & Related papers (2022-06-20T14:53:25Z) - Multi-View Substructure Learning for Drug-Drug Interaction Prediction [69.34322811160912]
We propose a novel multi- view drug substructure network for DDI prediction (MSN-DDI)
MSN-DDI learns chemical substructures from both the representations of the single drug (intra-view) and the drug pair (inter-view) simultaneously and utilizes the substructures to update the drug representation iteratively.
Comprehensive evaluations demonstrate that MSN-DDI has almost solved DDI prediction for existing drugs by achieving a relatively improved accuracy of 19.32% and an over 99% accuracy under the transductive setting.
arXiv Detail & Related papers (2022-03-28T05:44:29Z) - Synthetic ECG Signal Generation Using Generative Neural Networks [7.122393663641668]
We studied the synthetic ECG generation capability of 5 different models from the generative adversarial network (GAN) family.
The results show that all the tested models can to an extent successfully mass-generate acceptable heartbeats with high similarity in morphological features.
arXiv Detail & Related papers (2021-12-05T20:28:55Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
Existing databases for ECG delineation are small, being insufficient in size and in the array of pathological conditions they represent.
This article delves has two main contributions. First, a pseudo-synthetic data generation algorithm was developed, based in probabilistically composing ECG traces given "pools" of fundamental segments, as cropped from the original databases, and a set of rules for their arrangement into coherent synthetic traces.
Second, two novel segmentation-based loss functions have been developed, which attempt at enforcing the prediction of an exact number of independent structures and at producing closer segmentation boundaries by focusing on a reduced number of samples.
arXiv Detail & Related papers (2021-11-25T10:11:41Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.