A Multi-Agent System for Complex Reasoning in Radiology Visual Question Answering
- URL: http://arxiv.org/abs/2508.02841v1
- Date: Mon, 04 Aug 2025 19:09:52 GMT
- Title: A Multi-Agent System for Complex Reasoning in Radiology Visual Question Answering
- Authors: Ziruo Yi, Jinyu Liu, Ting Xiao, Mark V. Albert,
- Abstract summary: Radiology visual question answering (RVQA) provides precise answers to questions about chest X-ray images.<n>Recent methods based on multimodal large language models (MLLMs) and retrieval-augmented generation (RAG) have shown promising progress in RVQA.<n>We introduce a multi-agent system (MAS) designed to support complex reasoning in RVQA.
- Score: 3.3809462259925938
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Radiology visual question answering (RVQA) provides precise answers to questions about chest X-ray images, alleviating radiologists' workload. While recent methods based on multimodal large language models (MLLMs) and retrieval-augmented generation (RAG) have shown promising progress in RVQA, they still face challenges in factual accuracy, hallucinations, and cross-modal misalignment. We introduce a multi-agent system (MAS) designed to support complex reasoning in RVQA, with specialized agents for context understanding, multimodal reasoning, and answer validation. We evaluate our system on a challenging RVQA set curated via model disagreement filtering, comprising consistently hard cases across multiple MLLMs. Extensive experiments demonstrate the superiority and effectiveness of our system over strong MLLM baselines, with a case study illustrating its reliability and interpretability. This work highlights the potential of multi-agent approaches to support explainable and trustworthy clinical AI applications that require complex reasoning.
Related papers
- DeepSieve: Information Sieving via LLM-as-a-Knowledge-Router [57.28685457991806]
DeepSieve is an agentic RAG framework that incorporates information sieving via LLM-as-a-knowledge-router.<n>Our design emphasizes modularity, transparency, and adaptability, leveraging recent advances in agentic system design.
arXiv Detail & Related papers (2025-07-29T17:55:23Z) - A Versatile Pathology Co-pilot via Reasoning Enhanced Multimodal Large Language Model [26.704101714550827]
We present SmartPath-R1, a versatile MLLM capable of simultaneously addressing both ROI-level and WSI-level tasks.<n>Our framework combines scale-dependent supervised fine-tuning and task-aware reinforcement fine-tuning, which circumvents the requirement for chain-of-thought supervision.
arXiv Detail & Related papers (2025-07-23T08:09:42Z) - MAM: Modular Multi-Agent Framework for Multi-Modal Medical Diagnosis via Role-Specialized Collaboration [57.98393950821579]
We introduce the Modular Multi-Agent Framework for Multi-Modal Medical Diagnosis (MAM)<n>Inspired by our empirical findings, MAM decomposes the medical diagnostic process into specialized roles: a General Practitioner, Specialist Team, Radiologist, Medical Assistant, and Director.<n>This modular and collaborative framework enables efficient knowledge updates and leverages existing medical LLMs and knowledge bases.
arXiv Detail & Related papers (2025-06-24T17:52:43Z) - A Multimodal Multi-Agent Framework for Radiology Report Generation [2.1477122604204433]
Radiology report generation (RRG) aims to automatically produce diagnostic reports from medical images.<n>We propose a multimodal multi-agent framework for RRG that aligns with the stepwise clinical reasoning workflow.
arXiv Detail & Related papers (2025-05-14T20:28:04Z) - CBM-RAG: Demonstrating Enhanced Interpretability in Radiology Report Generation with Multi-Agent RAG and Concept Bottleneck Models [1.7042756021131187]
This paper presents an automated radiology report generation framework that combines Concept Bottleneck Models (CBMs) with a Multi-Agent Retrieval-Augmented Generation (RAG) system.<n>CBMs map chest X-ray features to human-understandable clinical concepts, enabling transparent disease classification.<n>RAG system integrates multi-agent collaboration and external knowledge to produce contextually rich, evidence-based reports.
arXiv Detail & Related papers (2025-04-29T16:14:55Z) - TAMA: A Human-AI Collaborative Thematic Analysis Framework Using Multi-Agent LLMs for Clinical Interviews [54.35097932763878]
Thematic analysis (TA) is a widely used qualitative approach for uncovering latent meanings in unstructured text data.<n>Here, we propose TAMA: A Human-AI Collaborative Thematic Analysis framework using Multi-Agent LLMs for clinical interviews.<n>We demonstrate that TAMA outperforms existing LLM-assisted TA approaches, achieving higher thematic hit rate, coverage, and distinctiveness.
arXiv Detail & Related papers (2025-03-26T15:58:16Z) - MicroVQA: A Multimodal Reasoning Benchmark for Microscopy-Based Scientific Research [57.61445960384384]
MicroVQA consists of 1,042 multiple-choice questions (MCQs) curated by biology experts across diverse microscopy modalities.<n> Benchmarking on state-of-the-art MLLMs reveal a peak performance of 53%.<n>Expert analysis of chain-of-thought responses shows perception errors are the most frequent, followed by knowledge errors and then overgeneralization errors.
arXiv Detail & Related papers (2025-03-17T17:33:10Z) - LLM-MedQA: Enhancing Medical Question Answering through Case Studies in Large Language Models [18.6994780408699]
Large Language Models (LLMs) face significant challenges in medical question answering.<n>We propose a novel approach incorporating similar case generation within a multi-agent medical question-answering system.<n>Our method capitalizes on the model's inherent medical knowledge and reasoning capabilities, eliminating the need for additional training data.
arXiv Detail & Related papers (2024-12-31T19:55:45Z) - Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering [70.44269982045415]
Retrieval-augmented generation (RAG) has emerged as a promising approach to enhance the performance of large language models (LLMs)
We introduce Medical Retrieval-Augmented Generation Benchmark (MedRGB) that provides various supplementary elements to four medical QA datasets.
Our experimental results reveals current models' limited ability to handle noise and misinformation in the retrieved documents.
arXiv Detail & Related papers (2024-11-14T06:19:18Z) - MMed-RAG: Versatile Multimodal RAG System for Medical Vision Language Models [49.765466293296186]
Recent progress in Medical Large Vision-Language Models (Med-LVLMs) has opened up new possibilities for interactive diagnostic tools.<n>Med-LVLMs often suffer from factual hallucination, which can lead to incorrect diagnoses.<n>We propose a versatile multimodal RAG system, MMed-RAG, designed to enhance the factuality of Med-LVLMs.
arXiv Detail & Related papers (2024-10-16T23:03:27Z) - Retrieval Meets Reasoning: Even High-school Textbook Knowledge Benefits Multimodal Reasoning [49.3242278912771]
We introduce a novel multimodal RAG framework named RMR (Retrieval Meets Reasoning)
The RMR framework employs a bi-modal retrieval module to identify the most relevant question-answer pairs.
It significantly boosts the performance of various vision-language models across a spectrum of benchmark datasets.
arXiv Detail & Related papers (2024-05-31T14:23:49Z) - Tool Calling: Enhancing Medication Consultation via Retrieval-Augmented Large Language Models [10.04914417538886]
Large-scale language models (LLMs) have achieved remarkable success across various language tasks but suffer from hallucinations and temporal misalignment.
We propose a new textitDistill-Retrieve-Read framework instead of the previous textitRetrieve-then-Read.
arXiv Detail & Related papers (2024-04-27T13:11:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.