論文の概要: Secure mmWave Beamforming with Proactive-ISAC Defense Against Beam-Stealing Attacks
- arxiv url: http://arxiv.org/abs/2508.02856v1
- Date: Mon, 04 Aug 2025 19:30:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-06 18:18:55.661677
- Title: Secure mmWave Beamforming with Proactive-ISAC Defense Against Beam-Stealing Attacks
- Title(参考訳): ビームステアリング攻撃に対するプロアクティブISAC防御によるセキュアmm波ビームフォーミング
- Authors: Seyed Bagher Hashemi Natanzi, Hossein Mohammadi, Bo Tang, Vuk Marojevic,
- Abstract要約: ミリ波通信システム(mmWave)は、高度なビームステアリング攻撃に対する感受性が増大している。
本稿では,高度深層強化学習(DRL)エージェントを有効かつ適応的な防御に利用した新しいフレームワークを提案する。
- 参考スコア(独自算出の注目度): 6.81194385663614
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Millimeter-wave (mmWave) communication systems face increasing susceptibility to advanced beam-stealing attacks, posing a significant physical layer security threat. This paper introduces a novel framework employing an advanced Deep Reinforcement Learning (DRL) agent for proactive and adaptive defense against these sophisticated attacks. A key innovation is leveraging Integrated Sensing and Communications (ISAC) capabilities for active, intelligent threat assessment. The DRL agent, built on a Proximal Policy Optimization (PPO) algorithm, dynamically controls ISAC probing actions to investigate suspicious activities. We introduce an intensive curriculum learning strategy that guarantees the agent experiences successful detection during training to overcome the complex exploration challenges inherent to such a security-critical task. Consequently, the agent learns a robust and adaptive policy that intelligently balances security and communication performance. Numerical results demonstrate that our framework achieves a mean attacker detection rate of 92.8% while maintaining an average user SINR of over 13 dB.
- Abstract(参考訳): ミリ波通信システム(mmWave)は、高度なビームステアリング攻撃に対する感受性が増大し、物理層セキュリティの脅威となる。
本稿では,先進的な深層強化学習(DRL)エージェントを用いた,これらの高度な攻撃に対する能動的かつ適応的な防御手法を提案する。
重要なイノベーションは、アクティブでインテリジェントな脅威評価にISAC(Integrated Sensing and Communications)機能を活用することだ。
The DRL agent built on a Proximal Policy Optimization (PPO) algorithm, dynamic control ISAC probing action to investigation doubt activities。
我々は,このようなセキュリティクリティカルな課題に固有の複雑な探索課題を克服するために,エージェントが訓練中に検出を成功させることを保証する,集中的なカリキュラム学習戦略を導入する。
その結果、エージェントは、セキュリティと通信性能をインテリジェントにバランスさせる堅牢で適応的なポリシーを学習する。
シミュレーションの結果,平均攻撃率は92.8%であり,平均ユーザSINRは13dB以上であることがわかった。
関連論文リスト
- Reinforcement Learning for Decision-Level Interception Prioritization in Drone Swarm Defense [56.47577824219207]
本稿では,この課題に対処する上で,強化学習の実践的メリットを示すケーススタディを提案する。
本研究では,現実的な運用制約を捉えた高忠実度シミュレーション環境を提案する。
エージェントは最適なインターセプション優先順位付けのために複数のエフェクターを調整することを学ぶ。
我々は、何百ものシミュレートされた攻撃シナリオにおいて、手作りルールベースのベースラインに対する学習ポリシーを評価する。
論文 参考訳(メタデータ) (2025-08-01T13:55:39Z) - Security Challenges in AI Agent Deployment: Insights from a Large Scale Public Competition [101.86739402748995]
44の現実的なデプロイメントシナリオを対象とした,22のフロンティアAIエージェントを対象にしています。
Agent Red Teamingベンチマークを構築し、19の最先端モデルで評価します。
私たちの発見は、今日のAIエージェントの重要かつ永続的な脆弱性を浮き彫りにしたものです。
論文 参考訳(メタデータ) (2025-07-28T05:13:04Z) - Hierarchical Adversarially-Resilient Multi-Agent Reinforcement Learning for Cyber-Physical Systems Security [0.0]
本稿では,階層型適応型レジリエントなマルチエージェント強化学習フレームワークを提案する。
このフレームワークには、進化するサイバー脅威をシミュレートし予測するために設計された敵の訓練ループが含まれている。
論文 参考訳(メタデータ) (2025-06-12T01:38:25Z) - Robust Intrusion Detection System with Explainable Artificial Intelligence [0.0]
逆入力は、標準インターフェイスを通じて機械学習(ML)モデルを利用することができる。
敵の訓練のような従来の防御は、計算的な用語で費用がかかるため、しばしばリアルタイム検出の提供に失敗する。
eXplainable Artificial Intelligence (XAI) を用いた敵攻撃の検出と緩和のための新しい戦略を提案する。
論文 参考訳(メタデータ) (2025-03-07T10:31:59Z) - Guardians of the Agentic System: Preventing Many Shots Jailbreak with Agentic System [0.8136541584281987]
本研究は,3つの検査手法を用いて,逆チューリングテストによりローグエージェントを検出し,マルチエージェントシミュレーションにより知覚的アライメントを解析する。
GEMINI 1.5 Pro と llama-3.3-70B, Deepseek r1 モデルを用いて, 抗ジェイルブレイクシステムを開発した。
GEMINI 1.5 Proの94%の精度など、検出能力は強いが、長時間の攻撃を受けた場合、システムは永続的な脆弱性に悩まされる。
論文 参考訳(メタデータ) (2025-02-23T23:35:15Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
EAI(Embodied AI)は、高度なAIモデルを現実世界のインタラクションのための物理的なエンティティに統合する。
高レベルのタスク計画のためのEAIエージェントの"脳"としてのファンデーションモデルは、有望な結果を示している。
しかし、これらのエージェントの物理的環境への展開は、重大な安全性上の課題を呈している。
本研究では,EAIシナリオにおける身体的リスクの自動評価のための新しいフレームワークEARBenchを紹介する。
論文 参考訳(メタデータ) (2024-08-08T13:19:37Z) - Raij\=u: Reinforcement Learning-Guided Post-Exploitation for Automating
Security Assessment of Network Systems [0.0]
Raij=uフレームワークは強化学習駆動の自動化アプローチである。
我々は2つのRLアルゴリズムを実装し、知的行動を行うことのできる特殊エージェントを訓練する。
エージェントは55段階未満の攻撃で84%以上の攻撃を成功させる。
論文 参考訳(メタデータ) (2023-09-27T09:36:22Z) - Improving Robustness of Reinforcement Learning for Power System Control
with Adversarial Training [71.7750435554693]
電力系統制御のために提案された最先端のRLエージェントが敵攻撃に対して脆弱であることを示す。
具体的には、敵のマルコフ決定プロセスを用いて攻撃方針を学習し、攻撃の有効性を実証する。
本稿では,RLエージェントの攻撃に対する堅牢性を高め,実行不可能な運用上の決定を回避するために,敵の訓練を利用することを提案する。
論文 参考訳(メタデータ) (2021-10-18T00:50:34Z) - Policy Smoothing for Provably Robust Reinforcement Learning [109.90239627115336]
入力のノルム有界対向摂動に対する強化学習の証明可能な堅牢性について検討する。
我々は、スムーズなポリシーによって得られる全報酬が、入力の摂動のノルムバウンドな逆数の下で一定の閾値以下に収まらないことを保証した証明書を生成する。
論文 参考訳(メタデータ) (2021-06-21T21:42:08Z) - Constraints Satisfiability Driven Reinforcement Learning for Autonomous
Cyber Defense [7.321728608775741]
強化学習(RL)の防御政策の最適化と検証を目的とした新しいハイブリッド自律エージェントアーキテクチャを紹介します。
我々は、安全かつ効果的な行動に向けてRL決定を操るために、制約検証(SMT(Satisfiability modulo theory))を用いる。
シミュレーションCPS環境における提案手法の評価は,エージェントが最適方針を迅速に学習し,99%のケースで多種多様な攻撃戦略を破ることを示す。
論文 参考訳(メタデータ) (2021-04-19T01:08:30Z) - Robust Deep Reinforcement Learning through Adversarial Loss [74.20501663956604]
近年の研究では、深層強化学習剤は、エージェントの入力に対する小さな逆方向の摂動に弱いことが示されている。
敵攻撃に対する堅牢性を向上した強化学習エージェントを訓練するための原則的フレームワークであるRADIAL-RLを提案する。
論文 参考訳(メタデータ) (2020-08-05T07:49:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。