ClinicalFMamba: Advancing Clinical Assessment using Mamba-based Multimodal Neuroimaging Fusion
- URL: http://arxiv.org/abs/2508.03008v1
- Date: Tue, 05 Aug 2025 02:25:53 GMT
- Title: ClinicalFMamba: Advancing Clinical Assessment using Mamba-based Multimodal Neuroimaging Fusion
- Authors: Meng Zhou, Farzad Khalvati,
- Abstract summary: Multimodal medical image fusion integrates complementary information from different imaging modalities to enhance diagnostic accuracy and treatment planning.<n>CNNs excel at local feature extraction but struggle to model global context effectively.<n>Transformers achieve superior long-range modeling at the cost of quadratic computational complexity.<n>Recent State Space Models (SSMs) offer a promising alternative.<n>We propose ClinicalFMamba, a novel end-to-end CNN-Mamba hybrid architecture.
- Score: 7.0879234284391455
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Multimodal medical image fusion integrates complementary information from different imaging modalities to enhance diagnostic accuracy and treatment planning. While deep learning methods have advanced performance, existing approaches face critical limitations: Convolutional Neural Networks (CNNs) excel at local feature extraction but struggle to model global context effectively, while Transformers achieve superior long-range modeling at the cost of quadratic computational complexity, limiting clinical deployment. Recent State Space Models (SSMs) offer a promising alternative, enabling efficient long-range dependency modeling in linear time through selective scan mechanisms. Despite these advances, the extension to 3D volumetric data and the clinical validation of fused images remains underexplored. In this work, we propose ClinicalFMamba, a novel end-to-end CNN-Mamba hybrid architecture that synergistically combines local and global feature modeling for 2D and 3D images. We further design a tri-plane scanning strategy for effectively learning volumetric dependencies in 3D images. Comprehensive evaluations on three datasets demonstrate the superior fusion performance across multiple quantitative metrics while achieving real-time fusion. We further validate the clinical utility of our approach on downstream 2D/3D brain tumor classification tasks, achieving superior performance over baseline methods. Our method establishes a new paradigm for efficient multimodal medical image fusion suitable for real-time clinical deployment.
Related papers
- Cross-Modality Masked Learning for Survival Prediction in ICI Treated NSCLC Patients [8.798544846026676]
We present a large-scale dataset of non-small cell lung cancer (NSCLC) patients treated with immunotherapy.<n>We introduce a novel framework for multi-modal feature fusion aimed at enhancing the accuracy of survival prediction.<n>Our approach demonstrates superior performance in multi-modal integration for NSCLC survival prediction, surpassing existing methods.
arXiv Detail & Related papers (2025-07-09T16:19:31Z) - Mamba Based Feature Extraction And Adaptive Multilevel Feature Fusion For 3D Tumor Segmentation From Multi-modal Medical Image [8.999013226631893]
Multi-modal 3D medical image segmentation aims to accurately identify tumor regions across different modalities.<n>Traditional convolutional neural network (CNN)-based methods struggle with capturing global features.<n>Transformers-based methods, despite effectively capturing global context, encounter high computational costs in 3D medical image segmentation.
arXiv Detail & Related papers (2025-04-30T03:29:55Z) - Edge-Enhanced Dilated Residual Attention Network for Multimodal Medical Image Fusion [13.029564509505676]
Multimodal medical image fusion is a crucial task that combines complementary information from different imaging modalities into a unified representation.
While deep learning methods have significantly advanced fusion performance, some of the existing CNN-based methods fall short in capturing fine-grained multiscale and edge features.
We propose a novel CNN-based architecture that addresses these limitations by introducing a Dilated Residual Attention Network Module for effective multiscale feature extraction.
arXiv Detail & Related papers (2024-11-18T18:11:53Z) - Improving 3D Medical Image Segmentation at Boundary Regions using Local Self-attention and Global Volume Mixing [14.0825980706386]
Volumetric medical image segmentation is a fundamental problem in medical image analysis where the objective is to accurately classify a given 3D volumetric medical image with voxel-level precision.
In this work, we propose a novel hierarchical encoder-decoder-based framework that strives to explicitly capture the local and global dependencies for 3D medical image segmentation.
The proposed framework exploits local volume-based self-attention to encode the local dependencies at high resolution and introduces a novel volumetric-mixer to capture the global dependencies at low-resolution feature representations.
arXiv Detail & Related papers (2024-10-20T11:08:38Z) - A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
We propose a unified MRI reconstruction model robust to various measurement undersampling patterns and image resolutions.<n>Our model improves SSIM by 11% and PSNR by 4 dB over a state-of-the-art CNN (End-to-End VarNet) with 600$times$ faster inference than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - Super-resolution of biomedical volumes with 2D supervision [84.5255884646906]
Masked slice diffusion for super-resolution exploits the inherent equivalence in the data-generating distribution across all spatial dimensions of biological specimens.
We focus on the application of SliceR to stimulated histology (SRH), characterized by its rapid acquisition of high-resolution 2D images but slow and costly optical z-sectioning.
arXiv Detail & Related papers (2024-04-15T02:41:55Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
This study proposes a novel Siamese Dual-Resolution Transformer (SDR-Former) framework for liver lesion classification.
The proposed framework has been validated through comprehensive experiments on two clinical datasets.
To support the scientific community, we are releasing our extensive multi-phase MR dataset for liver lesion analysis to the public.
arXiv Detail & Related papers (2024-02-27T06:32:56Z) - Masked LoGoNet: Fast and Accurate 3D Image Analysis for Medical Domain [46.44049019428938]
We introduce a new neural network architecture, termed LoGoNet, with a tailored self-supervised learning (SSL) method.<n>LoGoNet integrates a novel feature extractor within a U-shaped architecture, leveraging Large Kernel Attention (LKA) and a dual encoding strategy.<n>We propose a novel SSL method tailored for 3D images to compensate for the lack of large labeled datasets.
arXiv Detail & Related papers (2024-02-09T05:06:58Z) - 3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation [52.699139151447945]
We propose a novel adaptation method for transferring the segment anything model (SAM) from 2D to 3D for promptable medical image segmentation.
Our model can outperform domain state-of-the-art medical image segmentation models on 3 out of 4 tasks, specifically by 8.25%, 29.87%, and 10.11% for kidney tumor, pancreas tumor, colon cancer segmentation, and achieve similar performance for liver tumor segmentation.
arXiv Detail & Related papers (2023-06-23T12:09:52Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Mutual Attention-based Hybrid Dimensional Network for Multimodal Imaging
Computer-aided Diagnosis [4.657804635843888]
We propose a novel mutual attention-based hybrid dimensional network for MultiModal 3D medical image classification (MMNet)
The hybrid dimensional network integrates 2D CNN with 3D convolution modules to generate deeper and more informative feature maps.
We further design a mutual attention framework in the network to build the region-wise consistency in similar stereoscopic regions of different image modalities.
arXiv Detail & Related papers (2022-01-24T02:31:25Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
We propose a multi-stage attentive transfer learning framework for improving COVID-19 diagnosis.
Our proposed framework consists of three stages to train accurate diagnosis models through learning knowledge from multiple source tasks and data of different domains.
Importantly, we propose a novel self-supervised learning method to learn multi-scale representations for lung CT images.
arXiv Detail & Related papers (2021-01-14T01:39:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.