論文の概要: TF-MLPNet: Tiny Real-Time Neural Speech Separation
- arxiv url: http://arxiv.org/abs/2508.03047v1
- Date: Tue, 05 Aug 2025 03:47:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-06 18:18:55.762307
- Title: TF-MLPNet: Tiny Real-Time Neural Speech Separation
- Title(参考訳): TF-MLPNet: リアルタイムニューラル音声分離
- Authors: Malek Itani, Tuochao Chen, Shyamnath Gollakota,
- Abstract要約: TF-MLPNetは,このような低消費電力加速器上でリアルタイムに動作可能な,最初の音声分離ネットワークである。
その結果,我々の混合精度量子化学習(QAT)モデルは,GAP9プロセッサ上で6ミリ秒のオーディオチャンクをリアルタイムに処理できることがわかった。
- 参考スコア(独自算出の注目度): 3.7277730514654555
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Speech separation on hearable devices can enable transformative augmented and enhanced hearing capabilities. However, state-of-the-art speech separation networks cannot run in real-time on tiny, low-power neural accelerators designed for hearables, due to their limited compute capabilities. We present TF-MLPNet, the first speech separation network capable of running in real-time on such low-power accelerators while outperforming existing streaming models for blind speech separation and target speech extraction. Our network operates in the time-frequency domain, processing frequency sequences with stacks of fully connected layers that alternate along the channel and frequency dimensions, and independently processing the time sequence at each frequency bin using convolutional layers. Results show that our mixed-precision quantization-aware trained (QAT) model can process 6 ms audio chunks in real-time on the GAP9 processor, achieving a 3.5-4x runtime reduction compared to prior speech separation models.
- Abstract(参考訳): 可聴デバイス上での音声分離により、変換型拡張および拡張型補聴機能を実現することができる。
しかし、現状の音声分離ネットワークは、限られた計算能力のため、可聴性のために設計された小型で低消費電力のニューラルアクセラレータではリアルタイムに動作できない。
我々は,このような低消費電力加速器上でリアルタイムに動作可能な最初の音声分離ネットワークであるTF-MLPNetについて,ブラインド音声分離とターゲット音声抽出のための既存のストリーミングモデルより優れていることを示す。
我々のネットワークは、時間周波数領域で動作し、チャネルと周波数次元に沿って交互に接続された全層で周波数シーケンスを処理し、畳み込み層を用いて各周波数ビンでの時間シーケンスを独立に処理する。
その結果、我々の混合精度量子化学習モデル(QAT)は、GAP9プロセッサ上で6ミリ秒のオーディオチャンクをリアルタイムに処理でき、従来の音声分離モデルと比較して3.5-4倍のランタイム削減を実現していることがわかった。
関連論文リスト
- Neuromorphic Wireless Split Computing with Resonate-and-Fire Neurons [69.73249913506042]
本稿では、共振器(RF)ニューロンを用いて時間領域信号を直接処理する無線スプリットコンピューティングアーキテクチャについて検討する。
可変周波数で共鳴することにより、RFニューロンは低スパイク活性を維持しながら時間局在スペクトル特徴を抽出する。
実験の結果,提案したRF-SNNアーキテクチャは従来のLIF-SNNやANNと同等の精度を達成できることがわかった。
論文 参考訳(メタデータ) (2025-06-24T21:14:59Z) - VITA-Audio: Fast Interleaved Cross-Modal Token Generation for Efficient Large Speech-Language Model [70.25062476543091]
VITA-Audioは、高速な音声テキストトークン生成を備えたエンドツーエンドの大規模音声モデルである。
MCTPモジュールは、単一のモデルフォワードパス内で複数のオーディオトークンを効率よく生成する。
4段階のプログレッシブ・トレーニング・ストラテジーは,音声品質の低下を最小限に抑えたモデルアクセラレーションを実現するために検討された。
論文 参考訳(メタデータ) (2025-05-06T17:59:53Z) - RTFS-Net: Recurrent Time-Frequency Modelling for Efficient Audio-Visual Speech Separation [18.93255531121519]
本稿では,時間周波数領域の音声-視覚音声分離手法を提案する。
RTFS-Netはそのアルゴリズムをショートタイムフーリエ変換によって得られる複雑な時間周波数ビンに適用する。
これは、時間周波数領域の音声・視覚的音声分離法として初めて、現代の時間領域の全てを上回ります。
論文 参考訳(メタデータ) (2023-09-29T12:38:00Z) - Multi-Loss Convolutional Network with Time-Frequency Attention for
Speech Enhancement [16.701596804113553]
我々はDPCRNモジュールにおける自己注意を探求し、音声強調のためのMNTFA(Multi-Loss Convolutional Network with Time-Frequency Attention)と呼ばれるモデルの設計を行う。
DPRNNと比較して、軸方向の自己アテンションはメモリと計算の必要性を大幅に減らす。
本稿では,WavLMネットワークを用いた多分解能STFT損失とWavLM損失のジョイントトレーニング手法を提案する。
論文 参考訳(メタデータ) (2023-06-15T08:48:19Z) - Simple Pooling Front-ends For Efficient Audio Classification [56.59107110017436]
入力音声特徴量における時間的冗長性を排除することは,効率的な音声分類に有効な方法である可能性が示唆された。
本稿では、単純な非パラメトリックプーリング操作を用いて冗長な情報を削減する単純なプールフロントエンド(SimPFs)のファミリーを提案する。
SimPFは、市販オーディオニューラルネットワークの浮動小数点演算数の半数以上を削減できる。
論文 参考訳(メタデータ) (2022-10-03T14:00:41Z) - Dynamic Latency for CTC-Based Streaming Automatic Speech Recognition
With Emformer [0.4588028371034407]
効率的な拡張メモリ変換器ブロックと動的遅延学習法を用いたフレームレベルモデルを用いて音声認識のストリーミングを行う。
平均レイテンシは640msであり,テストクリーンでは6.4%,他では3.0%,チャンクワイドトランスでは3.0%の相対的なWER削減を実現している。
論文 参考訳(メタデータ) (2022-03-29T14:31:06Z) - A Study of Designing Compact Audio-Visual Wake Word Spotting System
Based on Iterative Fine-Tuning in Neural Network Pruning [57.28467469709369]
視覚情報を利用した小型音声覚醒単語スポッティング(WWS)システムの設計について検討する。
繰り返し微調整方式(LTH-IF)で抽選券仮説を通したニューラルネットワークプルーニング戦略を導入する。
提案システムでは,ノイズ条件の異なる単一モード(オーディオのみ,ビデオのみ)システムに対して,大幅な性能向上を実現している。
論文 参考訳(メタデータ) (2022-02-17T08:26:25Z) - MFA: TDNN with Multi-scale Frequency-channel Attention for
Text-independent Speaker Verification with Short Utterances [94.70787497137854]
本稿では、畳み込みニューラルネットワークとTDNNからなる新しいデュアルパス設計により、話者を異なるスケールで特徴付けるマルチスケール周波数チャネルアテンション(MFA)を提案する。
我々は,提案したMFAをVoxCelebデータベース上で評価し,提案したMFAを用いたフレームワークが,パラメータや複雑性を低減しつつ,最先端のパフォーマンスを実現することを確認した。
論文 参考訳(メタデータ) (2022-02-03T14:57:05Z) - End-to-End Neural Audio Coding for Real-Time Communications [22.699018098484707]
本稿では、リアルタイム通信(RTC)のための低レイテンシでエンドツーエンドのニューラルオーディオシステムTFNetを提案する。
短期的および長期的両方の時間的依存関係をキャプチャするために,時間的フィルタリングのためのインターリーブ構造を提案する。
エンドツーエンドの最適化により、TFNetは音声強調とパケットロスの隠蔽を共同で最適化し、3つのタスクに1対1のネットワークを提供する。
論文 参考訳(メタデータ) (2022-01-24T03:06:30Z) - VoiceFilter-Lite: Streaming Targeted Voice Separation for On-Device
Speech Recognition [60.462770498366524]
ターゲットユーザからの音声信号のみを保存するためにデバイス上で実行される単一チャネルソース分離モデルであるVoiceFilter-Liteを導入する。
本研究では,そのようなモデルを8ビット整数モデルとして量子化し,リアルタイムに実行可能であることを示す。
論文 参考訳(メタデータ) (2020-09-09T14:26:56Z) - WaveCRN: An Efficient Convolutional Recurrent Neural Network for
End-to-end Speech Enhancement [31.236720440495994]
本稿では、WaveCRNと呼ばれる効率的なE2E SEモデルを提案する。
WaveCRNでは、音声の局所性特徴は畳み込みニューラルネットワーク(CNN)によって捉えられ、その局所性特徴の時間的シーケンシャル特性はスタック化された単純な繰り返し単位(SRU)によってモデル化される。
さらに、入力雑音音声の雑音成分をより効果的に抑制するために、隠れた層における特徴マップの強化を行う新しい制限された特徴マスキング(RFM)アプローチを導出する。
論文 参考訳(メタデータ) (2020-04-06T13:48:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。