H3R: Hybrid Multi-view Correspondence for Generalizable 3D Reconstruction
- URL: http://arxiv.org/abs/2508.03118v1
- Date: Tue, 05 Aug 2025 05:56:30 GMT
- Title: H3R: Hybrid Multi-view Correspondence for Generalizable 3D Reconstruction
- Authors: Heng Jia, Linchao Zhu, Na Zhao,
- Abstract summary: H3R is a hybrid framework that integrates latent fusion with attention-based feature aggregation.<n>By integrating both paradigms, our approach enhances generalization while converging 2$times$ faster than existing methods.<n>Our method supports variable-number and high-resolution input views while demonstrating robust cross-dataset generalization.
- Score: 39.22287224290769
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite recent advances in feed-forward 3D Gaussian Splatting, generalizable 3D reconstruction remains challenging, particularly in multi-view correspondence modeling. Existing approaches face a fundamental trade-off: explicit methods achieve geometric precision but struggle with ambiguous regions, while implicit methods provide robustness but suffer from slow convergence. We present H3R, a hybrid framework that addresses this limitation by integrating volumetric latent fusion with attention-based feature aggregation. Our framework consists of two complementary components: an efficient latent volume that enforces geometric consistency through epipolar constraints, and a camera-aware Transformer that leverages Pl\"ucker coordinates for adaptive correspondence refinement. By integrating both paradigms, our approach enhances generalization while converging 2$\times$ faster than existing methods. Furthermore, we show that spatial-aligned foundation models (e.g., SD-VAE) substantially outperform semantic-aligned models (e.g., DINOv2), resolving the mismatch between semantic representations and spatial reconstruction requirements. Our method supports variable-number and high-resolution input views while demonstrating robust cross-dataset generalization. Extensive experiments show that our method achieves state-of-the-art performance across multiple benchmarks, with significant PSNR improvements of 0.59 dB, 1.06 dB, and 0.22 dB on the RealEstate10K, ACID, and DTU datasets, respectively. Code is available at https://github.com/JiaHeng-DLUT/H3R.
Related papers
- Dens3R: A Foundation Model for 3D Geometry Prediction [44.13431776180547]
Dens3R is a 3D foundation model designed for joint geometric dense prediction.<n>By integrating image-pair matching features with intrinsic invariance modeling, Dens3R accurately regresses multiple geometric quantities.
arXiv Detail & Related papers (2025-07-22T07:22:30Z) - Hi^2-GSLoc: Dual-Hierarchical Gaussian-Specific Visual Relocalization for Remote Sensing [6.997091164331322]
Visual relocalization is fundamental to remote sensing and UAV applications.<n>Existing methods face inherent trade-offs: image-based retrieval and pose regression approaches lack precision.<n>We introduce $mathrmHi2$-GSLoc, a dual-hierarchical relocalization framework that follows a sparse-to-dense and coarse-to-fine paradigm.
arXiv Detail & Related papers (2025-07-21T14:47:56Z) - Evolving High-Quality Rendering and Reconstruction in a Unified Framework with Contribution-Adaptive Regularization [27.509109317973817]
3D Gaussian Splatting (3DGS) has garnered significant attention for its high-quality rendering and fast inference speed.<n>Previous methods primarily focus on geometry regularization, with common approaches including primitive-based and dual-model frameworks.<n>We propose CarGS, a unified model leveraging-adaptive regularization to achieve simultaneous, high-quality surface reconstruction.
arXiv Detail & Related papers (2025-03-02T12:51:38Z) - Implicit Gaussian Splatting with Efficient Multi-Level Tri-Plane Representation [45.582869951581785]
Implicit Gaussian Splatting (IGS) is an innovative hybrid model that integrates explicit point clouds with implicit feature embeddings.
We introduce a level-based progressive training scheme, which incorporates explicit spatial regularization.
Our algorithm can deliver high-quality rendering using only a few MBs, effectively balancing storage efficiency and rendering fidelity.
arXiv Detail & Related papers (2024-08-19T14:34:17Z) - UPose3D: Uncertainty-Aware 3D Human Pose Estimation with Cross-View and Temporal Cues [55.69339788566899]
UPose3D is a novel approach for multi-view 3D human pose estimation.
It improves robustness and flexibility without requiring direct 3D annotations.
arXiv Detail & Related papers (2024-04-23T00:18:00Z) - latentSplat: Autoencoding Variational Gaussians for Fast Generalizable 3D Reconstruction [48.86083272054711]
latentSplat is a method to predict semantic Gaussians in a 3D latent space that can be splatted and decoded by a light-weight generative 2D architecture.
We show that latentSplat outperforms previous works in reconstruction quality and generalization, while being fast and scalable to high-resolution data.
arXiv Detail & Related papers (2024-03-24T20:48:36Z) - S^2Former-OR: Single-Stage Bi-Modal Transformer for Scene Graph Generation in OR [50.435592120607815]
Scene graph generation (SGG) of surgical procedures is crucial in enhancing holistically cognitive intelligence in the operating room (OR)
Previous works have primarily relied on multi-stage learning, where the generated semantic scene graphs depend on intermediate processes with pose estimation and object detection.
In this study, we introduce a novel single-stage bi-modal transformer framework for SGG in the OR, termed S2Former-OR.
arXiv Detail & Related papers (2024-02-22T11:40:49Z) - SD-MVS: Segmentation-Driven Deformation Multi-View Stereo with Spherical
Refinement and EM optimization [6.886220026399106]
We introduce Multi-View Stereo (SD-MVS) to tackle challenges in 3D reconstruction of textureless areas.
We are the first to adopt the Segment Anything Model (SAM) to distinguish semantic instances in scenes.
We propose a unique refinement strategy that combines spherical coordinates and gradient descent on normals and pixelwise search interval on depths.
arXiv Detail & Related papers (2024-01-12T05:25:57Z) - Similarity-Aware Fusion Network for 3D Semantic Segmentation [87.51314162700315]
We propose a similarity-aware fusion network (SAFNet) to adaptively fuse 2D images and 3D point clouds for 3D semantic segmentation.
We employ a late fusion strategy where we first learn the geometric and contextual similarities between the input and back-projected (from 2D pixels) point clouds.
We show that SAFNet significantly outperforms existing state-of-the-art fusion-based approaches across various data integrity.
arXiv Detail & Related papers (2021-07-04T09:28:18Z) - Dense Hybrid Recurrent Multi-view Stereo Net with Dynamic Consistency
Checking [54.58791377183574]
Our novel hybrid recurrent multi-view stereo net consists of two core modules: 1) a light DRENet (Dense Reception Expanded) module to extract dense feature maps of original size with multi-scale context information, 2) a HU-LSTM (Hybrid U-LSTM) to regularize 3D matching volume into predicted depth map.
Our method exhibits competitive performance to the state-of-the-art method while dramatically reduces memory consumption, which costs only $19.4%$ of R-MVSNet memory consumption.
arXiv Detail & Related papers (2020-07-21T14:59:59Z) - Dense Non-Rigid Structure from Motion: A Manifold Viewpoint [162.88686222340962]
Non-Rigid Structure-from-Motion (NRSfM) problem aims to recover 3D geometry of a deforming object from its 2D feature correspondences across multiple frames.
We show that our approach significantly improves accuracy, scalability, and robustness against noise.
arXiv Detail & Related papers (2020-06-15T09:15:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.