Navigation Pixie: Implementation and Empirical Study Toward On-demand Navigation Agents in Commercial Metaverse
- URL: http://arxiv.org/abs/2508.03216v1
- Date: Tue, 05 Aug 2025 08:45:34 GMT
- Title: Navigation Pixie: Implementation and Empirical Study Toward On-demand Navigation Agents in Commercial Metaverse
- Authors: Hikari Yanagawa, Yuichi Hiroi, Satomi Tokida, Yuji Hatada, Takefumi Hiraki,
- Abstract summary: We present Navigation Pixie, an on-demand navigation agent employing a loosely coupled architecture that integrates structured spatial metadata with natural language processing.<n>Our cross-platform experiments on commercial metaverse platform Cluster with 99 PC client and 94 VR-HMD participants demonstrated that Navigation Pixie significantly increased dwell time and free exploration.<n>This research contributes to advancing VR interaction design through conversational spatial navigation agents.
- Score: 3.05484549776329
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While commercial metaverse platforms offer diverse user-generated content, they lack effective navigation assistance that can dynamically adapt to users' interests and intentions. Although previous research has investigated on-demand agents in controlled environments, implementation in commercial settings with diverse world configurations and platform constraints remains challenging. We present Navigation Pixie, an on-demand navigation agent employing a loosely coupled architecture that integrates structured spatial metadata with LLM-based natural language processing while minimizing platform dependencies, which enables experiments on the extensive user base of commercial metaverse platforms. Our cross-platform experiments on commercial metaverse platform Cluster with 99 PC client and 94 VR-HMD participants demonstrated that Navigation Pixie significantly increased dwell time and free exploration compared to fixed-route and no-agent conditions across both platforms. Subjective evaluations revealed consistent on-demand preferences in PC environments versus context-dependent social perception advantages in VR-HMD. This research contributes to advancing VR interaction design through conversational spatial navigation agents, establishes cross-platform evaluation methodologies revealing environment-dependent effectiveness, and demonstrates empirical experimentation frameworks for commercial metaverse platforms.
Related papers
- IN-Sight: Interactive Navigation through Sight [20.184155117341497]
IN-Sight is a novel approach to self-supervised path planning.
It calculates traversability scores and incorporates them into a semantic map.
To precisely navigate around obstacles, IN-Sight employs a local planner.
arXiv Detail & Related papers (2024-08-01T07:27:54Z) - NoMaD: Goal Masked Diffusion Policies for Navigation and Exploration [57.15811390835294]
This paper describes how we can train a single unified diffusion policy to handle both goal-directed navigation and goal-agnostic exploration.
We show that this unified policy results in better overall performance when navigating to visually indicated goals in novel environments.
Our experiments, conducted on a real-world mobile robot platform, show effective navigation in unseen environments in comparison with five alternative methods.
arXiv Detail & Related papers (2023-10-11T21:07:14Z) - DRIFT: Deep Reinforcement Learning for Intelligent Floating Platforms Trajectories [18.420795137038677]
Floating platforms serve as versatile test-beds to emulate micro-gravity environments on Earth.
Our suite achieves robustness, adaptability, and good transferability from simulation to reality.
arXiv Detail & Related papers (2023-10-06T14:11:35Z) - Learning Navigational Visual Representations with Semantic Map
Supervision [85.91625020847358]
We propose a navigational-specific visual representation learning method by contrasting the agent's egocentric views and semantic maps.
Ego$2$-Map learning transfers the compact and rich information from a map, such as objects, structure and transition, to the agent's egocentric representations for navigation.
arXiv Detail & Related papers (2023-07-23T14:01:05Z) - Image-based Navigation in Real-World Environments via Multiple Mid-level
Representations: Fusion Models, Benchmark and Efficient Evaluation [13.207579081178716]
In recent learning-based navigation approaches, the scene understanding and navigation abilities of the agent are achieved simultaneously.
Unfortunately, even if simulators represent an efficient tool to train navigation policies, the resulting models often fail when transferred into the real world.
One possible solution is to provide the navigation model with mid-level visual representations containing important domain-invariant properties of the scene.
arXiv Detail & Related papers (2022-02-02T15:00:44Z) - Polyline Based Generative Navigable Space Segmentation for Autonomous
Visual Navigation [57.3062528453841]
We propose a representation-learning-based framework to enable robots to learn the navigable space segmentation in an unsupervised manner.
We show that the proposed PSV-Nets can learn the visual navigable space with high accuracy, even without any single label.
arXiv Detail & Related papers (2021-10-29T19:50:48Z) - On Embodied Visual Navigation in Real Environments Through Habitat [20.630139085937586]
Visual navigation models based on deep learning can learn effective policies when trained on large amounts of visual observations.
To deal with this limitation, several simulation platforms have been proposed in order to train visual navigation policies on virtual environments efficiently.
We show that our tool can effectively help to train and evaluate navigation policies on real-world observations without running navigation pisodes in the real world.
arXiv Detail & Related papers (2020-10-26T09:19:07Z) - Robot Navigation in Constrained Pedestrian Environments using
Reinforcement Learning [32.454250811667904]
Navigating fluently around pedestrians is a necessary capability for mobile robots deployed in human environments.
We present an approach based on reinforcement learning to learn policies capable of dynamic adaptation to the presence of moving pedestrians.
We show transfer of the learned policy to unseen 3D reconstructions of two real environments.
arXiv Detail & Related papers (2020-10-16T19:40:08Z) - Occupancy Anticipation for Efficient Exploration and Navigation [97.17517060585875]
We propose occupancy anticipation, where the agent uses its egocentric RGB-D observations to infer the occupancy state beyond the visible regions.
By exploiting context in both the egocentric views and top-down maps our model successfully anticipates a broader map of the environment.
Our approach is the winning entry in the 2020 Habitat PointNav Challenge.
arXiv Detail & Related papers (2020-08-21T03:16:51Z) - Learning to Move with Affordance Maps [57.198806691838364]
The ability to autonomously explore and navigate a physical space is a fundamental requirement for virtually any mobile autonomous agent.
Traditional SLAM-based approaches for exploration and navigation largely focus on leveraging scene geometry.
We show that learned affordance maps can be used to augment traditional approaches for both exploration and navigation, providing significant improvements in performance.
arXiv Detail & Related papers (2020-01-08T04:05:11Z) - Counterfactual Vision-and-Language Navigation via Adversarial Path Sampling [65.99956848461915]
Vision-and-Language Navigation (VLN) is a task where agents must decide how to move through a 3D environment to reach a goal.<n>One of the problems of the VLN task is data scarcity since it is difficult to collect enough navigation paths with human-annotated instructions for interactive environments.<n>We propose an adversarial-driven counterfactual reasoning model that can consider effective conditions instead of low-quality augmented data.
arXiv Detail & Related papers (2019-11-17T18:02:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.