DRIFT: Deep Reinforcement Learning for Intelligent Floating Platforms Trajectories
- URL: http://arxiv.org/abs/2310.04266v2
- Date: Mon, 16 Sep 2024 09:16:08 GMT
- Title: DRIFT: Deep Reinforcement Learning for Intelligent Floating Platforms Trajectories
- Authors: Matteo El-Hariry, Antoine Richard, Vivek Muralidharan, Matthieu Geist, Miguel Olivares-Mendez,
- Abstract summary: Floating platforms serve as versatile test-beds to emulate micro-gravity environments on Earth.
Our suite achieves robustness, adaptability, and good transferability from simulation to reality.
- Score: 18.420795137038677
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This investigation introduces a novel deep reinforcement learning-based suite to control floating platforms in both simulated and real-world environments. Floating platforms serve as versatile test-beds to emulate micro-gravity environments on Earth, useful to test autonomous navigation systems for space applications. Our approach addresses the system and environmental uncertainties in controlling such platforms by training policies capable of precise maneuvers amid dynamic and unpredictable conditions. Leveraging Deep Reinforcement Learning (DRL) techniques, our suite achieves robustness, adaptability, and good transferability from simulation to reality. Our deep reinforcement learning framework provides advantages such as fast training times, large-scale testing capabilities, rich visualization options, and ROS bindings for integration with real-world robotic systems. Being open access, our suite serves as a comprehensive platform for practitioners who want to replicate similar research in their own simulated environments and labs.
Related papers
- A General Infrastructure and Workflow for Quadrotor Deep Reinforcement Learning and Reality Deployment [48.90852123901697]
We propose a platform that enables seamless transfer of end-to-end deep reinforcement learning (DRL) policies to quadrotors.
Our platform provides rich types of environments including hovering, dynamic obstacle avoidance, trajectory tracking, balloon hitting, and planning in unknown environments.
arXiv Detail & Related papers (2025-04-21T14:25:23Z) - Low-cost Real-world Implementation of the Swing-up Pendulum for Deep Reinforcement Learning Experiments [4.669957449088593]
We describe a low-cost physical inverted pendulum apparatus and software environment for exploring sim-to-real DRL methods.
In particular, the design of our apparatus enables detailed examination of the delays that arise in physical systems when sensing, communicating, learning, inferring and actuating.
Our design shows how commercial, off-the-shelf electronics and electromechanical and sensor systems, combined with common metal extrusions, dowel and 3D printed couplings provide a pathway for affordable physical DRL apparatus.
arXiv Detail & Related papers (2025-03-14T04:18:36Z) - Neural-based Control for CubeSat Docking Maneuvers [0.0]
This paper presents an innovative approach employing Artificial Neural Networks (ANN) trained through Reinforcement Learning (RL)
The proposed strategy is easily implementable onboard and offers fast adaptability and robustness to disturbances by learning control policies from experience.
Our findings highlight the efficacy of RL in assuring the adaptability and efficiency of spacecraft RVD, offering insights into future mission expectations.
arXiv Detail & Related papers (2024-10-16T16:05:46Z) - Gaussian Splatting to Real World Flight Navigation Transfer with Liquid Networks [93.38375271826202]
We present a method to improve generalization and robustness to distribution shifts in sim-to-real visual quadrotor navigation tasks.
We first build a simulator by integrating Gaussian splatting with quadrotor flight dynamics, and then, train robust navigation policies using Liquid neural networks.
In this way, we obtain a full-stack imitation learning protocol that combines advances in 3D Gaussian splatting radiance field rendering, programming of expert demonstration training data, and the task understanding capabilities of Liquid networks.
arXiv Detail & Related papers (2024-06-21T13:48:37Z) - Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning [53.3760591018817]
We propose a new benchmarking environment for aquatic navigation using recent advances in the integration between game engines and Deep Reinforcement Learning.
Specifically, we focus on PPO, one of the most widely accepted algorithms, and we propose advanced training techniques.
Our empirical evaluation shows that a well-designed combination of these ingredients can achieve promising results.
arXiv Detail & Related papers (2024-05-30T23:20:23Z) - Learning and Adapting Agile Locomotion Skills by Transferring Experience [71.8926510772552]
We propose a framework for training complex robotic skills by transferring experience from existing controllers to jumpstart learning new tasks.
We show that our method enables learning complex agile jumping behaviors, navigating to goal locations while walking on hind legs, and adapting to new environments.
arXiv Detail & Related papers (2023-04-19T17:37:54Z) - Residual Physics Learning and System Identification for Sim-to-real
Transfer of Policies on Buoyancy Assisted Legged Robots [14.760426243769308]
In this work, we demonstrate robust sim-to-real transfer of control policies on the BALLU robots via system identification.
Rather than relying on standard supervised learning formulations, we utilize deep reinforcement learning to train an external force policy.
We analyze the improved simulation fidelity by comparing the simulation trajectories against the real-world ones.
arXiv Detail & Related papers (2023-03-16T18:49:05Z) - PIC4rl-gym: a ROS2 modular framework for Robots Autonomous Navigation
with Deep Reinforcement Learning [0.4588028371034407]
This work introduces the textitPIC4rl-gym, a fundamental modular framework to enhance navigation and learning research.
The paper describes the whole structure of the PIC4rl-gym, which fully integrates DRL agent's training and testing in several indoor and outdoor navigation scenarios.
A modular approach is adopted to easily customize the simulation by selecting new platforms, sensors, or models.
arXiv Detail & Related papers (2022-11-19T14:58:57Z) - DeXtreme: Transfer of Agile In-hand Manipulation from Simulation to
Reality [64.51295032956118]
We train a policy that can perform robust dexterous manipulation on an anthropomorphic robot hand.
Our work reaffirms the possibilities of sim-to-real transfer for dexterous manipulation in diverse kinds of hardware and simulator setups.
arXiv Detail & Related papers (2022-10-25T01:51:36Z) - A Walk in the Park: Learning to Walk in 20 Minutes With Model-Free
Reinforcement Learning [86.06110576808824]
Deep reinforcement learning is a promising approach to learning policies in uncontrolled environments.
Recent advancements in machine learning algorithms and libraries combined with a carefully tuned robot controller lead to learning quadruped in only 20 minutes in the real world.
arXiv Detail & Related papers (2022-08-16T17:37:36Z) - VISTA 2.0: An Open, Data-driven Simulator for Multimodal Sensing and
Policy Learning for Autonomous Vehicles [131.2240621036954]
We present VISTA, an open source, data-driven simulator that integrates multiple types of sensors for autonomous vehicles.
Using high fidelity, real-world datasets, VISTA represents and simulates RGB cameras, 3D LiDAR, and event-based cameras.
We demonstrate the ability to train and test perception-to-control policies across each of the sensor types and showcase the power of this approach via deployment on a full scale autonomous vehicle.
arXiv Detail & Related papers (2021-11-23T18:58:10Z) - Learning to Fly -- a Gym Environment with PyBullet Physics for
Reinforcement Learning of Multi-agent Quadcopter Control [0.0]
We propose an open-source environment for multiple quadcopters based on the Bullet physics engine.
Its multi-agent and vision based reinforcement learning interfaces, as well as the support of realistic collisions and aerodynamic effects, make it, to the best of our knowledge, a first of its kind.
arXiv Detail & Related papers (2021-03-03T02:47:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.