FFHQ-Makeup: Paired Synthetic Makeup Dataset with Facial Consistency Across Multiple Styles
- URL: http://arxiv.org/abs/2508.03241v2
- Date: Wed, 06 Aug 2025 14:28:01 GMT
- Title: FFHQ-Makeup: Paired Synthetic Makeup Dataset with Facial Consistency Across Multiple Styles
- Authors: Xingchao Yang, Shiori Ueda, Yuantian Huang, Tomoya Akiyama, Takafumi Taketomi,
- Abstract summary: We present FFHQ-Makeup, a high-quality synthetic makeup dataset that pairs each identity with multiple makeup styles.<n>To the best of our knowledge, this is the first work that focuses specifically on constructing a makeup dataset.
- Score: 1.4680035572775534
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Paired bare-makeup facial images are essential for a wide range of beauty-related tasks, such as virtual try-on, facial privacy protection, and facial aesthetics analysis. However, collecting high-quality paired makeup datasets remains a significant challenge. Real-world data acquisition is constrained by the difficulty of collecting large-scale paired images, while existing synthetic approaches often suffer from limited realism or inconsistencies between bare and makeup images. Current synthetic methods typically fall into two categories: warping-based transformations, which often distort facial geometry and compromise the precision of makeup; and text-to-image generation, which tends to alter facial identity and expression, undermining consistency. In this work, we present FFHQ-Makeup, a high-quality synthetic makeup dataset that pairs each identity with multiple makeup styles while preserving facial consistency in both identity and expression. Built upon the diverse FFHQ dataset, our pipeline transfers real-world makeup styles from existing datasets onto 18K identities by introducing an improved makeup transfer method that disentangles identity and makeup. Each identity is paired with 5 different makeup styles, resulting in a total of 90K high-quality bare-makeup image pairs. To the best of our knowledge, this is the first work that focuses specifically on constructing a makeup dataset. We hope that FFHQ-Makeup fills the gap of lacking high-quality bare-makeup paired datasets and serves as a valuable resource for future research in beauty-related tasks.
Related papers
- AvatarMakeup: Realistic Makeup Transfer for 3D Animatable Head Avatars [89.31582684550723]
AvatarMakeup achieves state-of-the-art makeup transfer quality and consistency throughout animation.<n>Coherent Duplication optimize a global UV map by recoding the averaged facial attributes among the generated makeup images.<n>Experiments demonstrate that AvatarMakeup achieves state-of-the-art makeup transfer quality and consistency throughout animation.
arXiv Detail & Related papers (2025-07-03T08:26:57Z) - BeautyBank: Encoding Facial Makeup in Latent Space [2.113770213797994]
We propose BeautyBank, a novel makeup encoder that disentangles pattern features of bare and makeup faces.
Our method encodes makeup features into a high-dimensional space, preserving essential details necessary for makeup reconstruction.
We also propose a Progressive Makeup Tuning (PMT) strategy, specifically designed to enhance the preservation of detailed makeup features.
arXiv Detail & Related papers (2024-11-18T01:52:31Z) - DiffAM: Diffusion-based Adversarial Makeup Transfer for Facial Privacy Protection [60.73609509756533]
DiffAM is a novel approach to generate high-quality protected face images with adversarial makeup transferred from reference images.
Experiments demonstrate that DiffAM achieves higher visual quality and attack success rates with a gain of 12.98% under black-box setting.
arXiv Detail & Related papers (2024-05-16T08:05:36Z) - Stable-Makeup: When Real-World Makeup Transfer Meets Diffusion Model [15.380297080210559]
Current makeup transfer methods are limited to simple makeup styles, making them difficult to apply in real-world scenarios.<n>We introduce Stable-Makeup, a novel diffusion-based makeup transfer method capable of robustly transferring a wide range of real-world makeup.
arXiv Detail & Related papers (2024-03-12T15:53:14Z) - BeautyREC: Robust, Efficient, and Content-preserving Makeup Transfer [73.39598356799974]
We propose a Robust, Efficient, and Component-specific makeup transfer method (abbreviated as BeautyREC)
A component-specific correspondence to directly transfer the makeup style of a reference image to the corresponding components.
As an auxiliary, the long-range visual dependencies of Transformer are introduced for effective global makeup transfer.
arXiv Detail & Related papers (2022-12-12T12:38:27Z) - DRAN: Detailed Region-Adaptive Normalization for Conditional Image
Synthesis [25.936764522125703]
We propose a novel normalization module, named Detailed Region-Adaptive Normalization(DRAN)
It adaptively learns both fine-grained and coarse-grained style representations.
We collect a new makeup dataset (Makeup-Complex dataset) that contains a wide range of complex makeup styles.
arXiv Detail & Related papers (2021-09-29T16:19:37Z) - SynFace: Face Recognition with Synthetic Data [83.15838126703719]
We devise the SynFace with identity mixup (IM) and domain mixup (DM) to mitigate the performance gap.
We also perform a systematically empirical analysis on synthetic face images to provide some insights on how to effectively utilize synthetic data for face recognition.
arXiv Detail & Related papers (2021-08-18T03:41:54Z) - PSGAN++: Robust Detail-Preserving Makeup Transfer and Removal [176.47249346856393]
PSGAN++ is capable of performing both detail-preserving makeup transfer and effective makeup removal.
For makeup transfer, PSGAN++ uses a Makeup Distill Network to extract makeup information.
For makeup removal, PSGAN++ applies an Identity Distill Network to embed the identity information from with-makeup images into identity matrices.
arXiv Detail & Related papers (2021-05-26T04:37:57Z) - Cosmetic-Aware Makeup Cleanser [109.41917954315784]
Face verification aims at determining whether a pair of face images belongs to the same identity.
Recent studies have revealed the negative impact of facial makeup on the verification performance.
This paper proposes a semanticaware makeup cleanser (SAMC) to remove facial makeup under different poses and expressions.
arXiv Detail & Related papers (2020-04-20T09:18:23Z) - Local Facial Makeup Transfer via Disentangled Representation [18.326829657548025]
We propose a novel unified adversarial disentangling network to decompose face images into four independent components, i.e., personal identity, lips makeup style, eyes makeup style and face makeup style.
Our approach can produce more realistic and accurate makeup transfer results compared to the state-of-the-art methods.
arXiv Detail & Related papers (2020-03-27T00:25:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.