論文の概要: LECTOR: LLM-Enhanced Concept-based Test-Oriented Repetition for Adaptive Spaced Learning
- arxiv url: http://arxiv.org/abs/2508.03275v1
- Date: Tue, 05 Aug 2025 09:53:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-06 18:18:55.898643
- Title: LECTOR: LLM-Enhanced Concept-based Test-Oriented Repetition for Adaptive Spaced Learning
- Title(参考訳): LECTOR: 適応型空間学習のためのLLMによる概念ベーステスト指向反復
- Authors: Jiahao Zhao,
- Abstract要約: LECTORは、テスト指向学習シナリオのための新しい適応スケジューリングアルゴリズムである。
語彙学習における意味的混乱の課題に対処する。
LECTORは、最高のベースラインアルゴリズムでは88.4%に比べて90.2%の成功率を達成した。
- 参考スコア(独自算出の注目度): 1.8130068086063336
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spaced repetition systems are fundamental to efficient learning and memory retention, but existing algorithms often struggle with semantic interference and personalized adaptation. We present LECTOR (\textbf{L}LM-\textbf{E}nhanced \textbf{C}oncept-based \textbf{T}est-\textbf{O}riented \textbf{R}epetition), a novel adaptive scheduling algorithm specifically designed for test-oriented learning scenarios, particularly language examinations where success rate is paramount. LECTOR leverages large language models for semantic analysis while incorporating personalized learning profiles, addressing the critical challenge of semantic confusion in vocabulary learning by utilizing LLM-powered semantic similarity assessment and integrating it with established spaced repetition principles. Our comprehensive evaluation against six baseline algorithms (SSP-MMC, SM2, HLR, FSRS, ANKI, THRESHOLD) across 100 simulated learners over 100 days demonstrates significant improvements: LECTOR achieves a 90.2\% success rate compared to 88.4\% for the best baseline (SSP-MMC), representing a 2.0\% relative improvement. The algorithm shows particular strength in handling semantically similar concepts, reducing confusion-induced errors while maintaining computational efficiency. Our results establish LECTOR as a promising direction for intelligent tutoring systems and adaptive learning platforms.
- Abstract(参考訳): 空間的反復システムは効率的な学習と記憶保持に基本的であるが、既存のアルゴリズムは意味的干渉とパーソナライズされた適応にしばしば苦労する。
LECTOR (\textbf{L}LM-\textbf{E}nhanced \textbf{C}oncept-based \textbf{T}est-\textbf{O}riented \textbf{R}epetition) は、テスト指向の学習シナリオ、特に成功率が最重要である言語試験のために設計された、新しい適応スケジューリングアルゴリズムである。
LECTORは、パーソナライズされた学習プロファイルを取り入れながら、大きな言語モデルを意味分析に活用し、LLMを利用した意味類似性評価を活用し、それを確立された空間的反復原理と統合することにより、語彙学習における意味混乱の重要な課題に対処する。
100日間のシミュレーション学習者に対する6つのベースラインアルゴリズム (SSP-MMC, SM2, HLR, FSRS, ANKI, THRESHOLD) に対する総合的な評価では、LECTOR は、最良ベースライン (SSP-MMC) の 88.4\% に対して 90.2\% の成功率を達成し、相対的な改善率 (SSP-MMC) を表す。
このアルゴリズムは意味論的に類似した概念を処理し、計算効率を保ちながら混乱に起因する誤りを低減させる。
我々は,知的学習システムと適応学習プラットフォームにおいて,LECTORを有望な方向性として確立した。
関連論文リスト
- Efficient Machine Unlearning via Influence Approximation [75.31015485113993]
インフルエンサーベースのアンラーニングは、個別のトレーニングサンプルがモデルパラメータに与える影響を再トレーニングせずに推定する顕著なアプローチとして現れてきた。
本稿では,暗記(増分学習)と忘れ(未学習)の理論的関連性を確立する。
本稿では、インフルエンス近似アンラーニングアルゴリズムを導入し、インクリメンタルな視点から効率的なマシンアンラーニングを行う。
論文 参考訳(メタデータ) (2025-07-31T05:34:27Z) - Taming Polysemanticity in LLMs: Provable Feature Recovery via Sparse Autoencoders [50.52694757593443]
既存のSAEトレーニングアルゴリズムは厳密な数学的保証を欠いていることが多く、実用的な制限に悩まされている。
まず,特徴の特定可能性という新たな概念を含む特徴回復問題の統計的枠組みを提案する。
本稿では、ニューラルネットワークのバイアスパラメータを適応的に調整し、適切なアクティベーション間隔を確保する手法である「バイアス適応」に基づく新たなSAEトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-06-16T20:58:05Z) - Towards Lifecycle Unlearning Commitment Management: Measuring Sample-level Unlearning Completeness [30.596695293390415]
補間近似測定(Interpolated Approximate Measurement, IAM)は、非学習推論用に設計されたフレームワークである。
IAMは、クエリされたサンプルに対するモデルの一般化適合行動ギャップを補間することにより、サンプルレベルの未学習完全性を定量化する。
IAMを最近の近似アンラーニングアルゴリズムに適用し、オーバーアンラーニングとアンダーアンラーニングの両方のリスクを明らかにする。
論文 参考訳(メタデータ) (2025-06-06T14:22:18Z) - ReLearn: Unlearning via Learning for Large Language Models [64.2802606302194]
本研究では、効果的なアンラーニングのためのデータ拡張および微調整パイプラインであるReLearnを提案する。
このフレームワークでは、知識レベルの保存を測定するために、知識獲得率(KFR)と知識保持率(KRR)を導入している。
実験の結果,ReLearnは高品質な出力を保ちながら,目標とするリセットを実現することができた。
論文 参考訳(メタデータ) (2025-02-16T16:31:00Z) - Recursive Inference Scaling: A Winning Path to Scalable Inference in Language and Multimodal Systems [21.01887711305712]
本稿では,言語およびマルチモーダルシステムにおける推論時間をスケールするための補完的なプラグインレシピとして,Recursive Inference Scaling (RINS)を紹介した。
RINS はモバイル LLM の最近の "repeat-all-over" (RAO) 戦略など、他の55種類よりも大幅に優れている。
軽量アダプタでは、RINSは非レグレット戦略を提供するため、RINS対応プレトレーニングにより言語モデリングのパフォーマンスが向上する。
論文 参考訳(メタデータ) (2025-02-11T12:11:40Z) - Semantic Consistency Regularization with Large Language Models for Semi-supervised Sentiment Analysis [20.503153899462323]
本稿では,半教師付き感情分析のためのフレームワークを提案する。
テキストを意味的に拡張する2つのプロンプト戦略を導入する。
実験により,従来の半教師付き手法よりも優れた性能が得られた。
論文 参考訳(メタデータ) (2025-01-29T12:03:11Z) - Words Matter: Leveraging Individual Text Embeddings for Code Generation in CLIP Test-Time Adaptation [21.20806568508201]
テスト時推論において視覚言語モデル(VLM)が遭遇する分布ドリフトを軽減するために,クラステキスト情報を活用する方法を示す。
本稿では,ラベル割り当て問題の固定セントロイドとしてジェネリッククラステキスト埋め込みを利用して,テスト時間サンプルの擬似ラベルを生成することを提案する。
多様な複雑性を示す複数の人気のあるテスト時間適応ベンチマークの実験は、CLIP-OTの優位性を実証的に示している。
論文 参考訳(メタデータ) (2024-11-26T00:15:37Z) - Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
異なるタスクシナリオのモデルアライメントを改善するために,不確実性認識学習(UAL)を提案する。
トレーニングのラベルの平滑化値を個々のサンプルの不確実性に応じて適応的に設定する。
広く使われているベンチマーク実験では、我々のUALは標準教師あり微調整よりも著しく優れています。
論文 参考訳(メタデータ) (2024-06-07T11:37:45Z) - Scalable Learning of Latent Language Structure With Logical Offline
Cycle Consistency [71.42261918225773]
概念的には、LOCCOは、トレーニング対象のセマンティクスを使用してラベルなしテキストのアノテーションを生成する、自己学習の一形態と見なすことができる。
追加ボーナスとして、LOCCOによって生成されたアノテーションは、神経テキスト生成モデルをトレーニングするために自明に再利用することができる。
論文 参考訳(メタデータ) (2023-05-31T16:47:20Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
非パラメトリックストリーミング設定のためのニューラルネットワーク(NN)ベースの能動学習アルゴリズムの理論的および経験的性能を改善する。
本研究では,SOTA(State-of-the-art (State-the-art)) 関連研究で使用されるものよりも,アクティブラーニングに適する人口減少を最小化することにより,2つの後悔の指標を導入する。
論文 参考訳(メタデータ) (2022-10-02T05:03:38Z) - Text Generation with Efficient (Soft) Q-Learning [91.47743595382758]
強化学習(RL)は、任意のタスクメトリクスを報酬としてプラグインすることで、より柔軟なソリューションを提供する。
ソフトQ-ラーニングの観点からテキスト生成のための新しいRL式を導入する。
雑音/負の例から学習し、敵攻撃、即時生成など、幅広いタスクにアプローチを適用する。
論文 参考訳(メタデータ) (2021-06-14T18:48:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。