論文の概要: Zero Shot Domain Adaptive Semantic Segmentation by Synthetic Data Generation and Progressive Adaptation
- arxiv url: http://arxiv.org/abs/2508.03300v1
- Date: Tue, 05 Aug 2025 10:21:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-06 18:18:55.914024
- Title: Zero Shot Domain Adaptive Semantic Segmentation by Synthetic Data Generation and Progressive Adaptation
- Title(参考訳): 合成データ生成とプログレッシブ適応によるゼロショット領域適応セマンティックセマンティックセグメンテーション
- Authors: Jun Luo, Zijing Zhao, Yang Liu,
- Abstract要約: 本稿では,ゼロショット領域適応型セマンティックセマンティックセグメンテーションに挑戦する新たな手法を提案する。
トレーニング済みオフザシェルフテキスト・ツー・イメージ拡散モデルを用いて,ソース・ドメイン・イメージをターゲット・スタイルに転送することでトレーニング・イメージを生成する。
合成データにおけるノイズの影響を軽減するため,我々は,学習過程を通じて堅牢な学習を確実にする,進行的適応戦略を設計する。
- 参考スコア(独自算出の注目度): 8.124539956043074
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning-based semantic segmentation models achieve impressive results yet remain limited in handling distribution shifts between training and test data. In this paper, we present SDGPA (Synthetic Data Generation and Progressive Adaptation), a novel method that tackles zero-shot domain adaptive semantic segmentation, in which no target images are available, but only a text description of the target domain's style is provided. To compensate for the lack of target domain training data, we utilize a pretrained off-the-shelf text-to-image diffusion model, which generates training images by transferring source domain images to target style. Directly editing source domain images introduces noise that harms segmentation because the layout of source images cannot be precisely maintained. To address inaccurate layouts in synthetic data, we propose a method that crops the source image, edits small patches individually, and then merges them back together, which helps improve spatial precision. Recognizing the large domain gap, SDGPA constructs an augmented intermediate domain, leveraging easier adaptation subtasks to enable more stable model adaptation to the target domain. Additionally, to mitigate the impact of noise in synthetic data, we design a progressive adaptation strategy, ensuring robust learning throughout the training process. Extensive experiments demonstrate that our method achieves state-of-the-art performance in zero-shot semantic segmentation. The code is available at https://github.com/ROUJINN/SDGPA
- Abstract(参考訳): 深層学習に基づくセマンティックセグメンテーションモデルは、トレーニングデータとテストデータの間の分散シフトを扱う際には、依然として十分な結果が得られる。
本稿では、ゼロショット領域適応型セマンティックセマンティックセグメンテーションに取り組む新しい手法であるSDGPA(Synthetic Data Generation and Progressive Adaptation)を提案する。
対象領域のトレーニングデータの欠如を補うために,対象領域のイメージをターゲットスタイルに転送することでトレーニング画像を生成する,事前訓練されたオフ・ザ・シェルフテキスト・ツー・イメージ拡散モデルを利用する。
ソースドメインイメージを直接編集することは、ソースイメージのレイアウトを正確に維持できないため、セグメンテーションを損なうノイズを導入する。
合成データの不正確なレイアウトに対処するため,ソースイメージを抽出し,個別に小さなパッチを編集し,それらをマージし,空間的精度を向上させる手法を提案する。
SDGPAは、大きなドメインギャップを認識し、拡張中間ドメインを構築し、より簡単な適応サブタスクを活用し、ターゲットドメインへのより安定したモデル適応を可能にする。
さらに、合成データにおけるノイズの影響を軽減するため、私たちは、学習過程を通じて堅牢な学習を確実にするプログレッシブ適応戦略を設計する。
大規模な実験により,ゼロショットセマンティックセグメンテーションにおける最先端性能が得られた。
コードはhttps://github.com/ROUJINN/SDGPAで公開されている。
関連論文リスト
- Improving Diversity in Zero-Shot GAN Adaptation with Semantic Variations [61.132408427908175]
0ショットのGAN適応は、よく訓練されたジェネレータを再利用して、目に見えないターゲットドメインの画像を合成することを目的としている。
実際の画像の代わりに1つの代表的テキスト機能しか持たないため、合成された画像は徐々に多様性を損なう。
そこで本研究では,CLIP空間における対象テキストの意味的変化を見つけるための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-08-21T08:12:28Z) - Generating Reliable Pixel-Level Labels for Source Free Domain Adaptation [13.913151437401472]
ReGENは、画像間翻訳ネットワークとセグメンテーションネットワークとを備える。
我々のワークフローは、元のターゲット領域画像からノイズ予測を用いてターゲットライクな画像を生成する。
論文 参考訳(メタデータ) (2023-07-03T09:44:13Z) - One-shot Unsupervised Domain Adaptation with Personalized Diffusion
Models [15.590759602379517]
ラベル付きソースドメインからターゲットドメインへのセグメンテーションモデルの適用は、ドメイン適応において最も難しい問題の1つである。
テキストと画像の拡散モデルを用いて、写真リアル画像を用いた合成ターゲットデータセットを生成する。
実験の結果,本手法は最先端OSUDA法を最大7.1%超えることがわかった。
論文 参考訳(メタデータ) (2023-03-31T14:16:38Z) - Edge-preserving Domain Adaptation for semantic segmentation of Medical
Images [0.0]
ドメイン適応は、目に見えない環境で大量のラベル付きデータの不足に対処する技術である。
本稿では,元の画像のエッジの詳細を維持しつつ,サイクル一貫性損失を用いてドメイン間を適応するモデルを提案する。
2つの眼底血管セグメンテーションデータセットの他のアプローチと比較することにより,本アルゴリズムの有効性を実証する。
論文 参考訳(メタデータ) (2021-11-18T18:14:33Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
リモートセンシング画像からの道路セグメンテーションは、幅広い応用可能性を持つ課題である。
本稿では,この領域における領域シフト(DS)問題に対処するため,RoadDAと呼ばれる新たな段階的ドメイン適応モデルを提案する。
2つのベンチマーク実験の結果、RoadDAはドメインギャップを効率的に減らし、最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2021-08-28T09:29:14Z) - DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic
Segmentation [97.74059510314554]
セグメンテーションのための教師なしドメイン適応(UDA)は、ラベル付きソースドメインで訓練されたセグメンテーションモデルをラベル付きターゲットドメインに適応させることを目的としている。
既存の手法では、大きなドメインギャップに悩まされながら、ドメイン不変の特徴を学習しようとする。
本稿では,新しいDual Soft-Paste (DSP)法を提案する。
論文 参考訳(メタデータ) (2021-07-20T16:22:40Z) - A Curriculum-style Self-training Approach for Source-Free Semantic Segmentation [91.13472029666312]
ソースフリーなドメイン適応型セマンティックセマンティックセグメンテーションのためのカリキュラムスタイルの自己学習手法を提案する。
提案手法は, ソースフリーなセマンティックセグメンテーションタスクにおいて, 合成-実-実-実-実-実-実-非実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実
論文 参考訳(メタデータ) (2021-06-22T10:21:39Z) - PixMatch: Unsupervised Domain Adaptation via Pixelwise Consistency
Training [4.336877104987131]
教師なしドメイン適応はセマンティックセグメンテーションの有望なテクニックである。
対象領域整合性訓練の概念に基づく非監視領域適応のための新しいフレームワークを提案する。
私たちのアプローチはシンプルで、実装が簡単で、トレーニング時にメモリ効率が向上します。
論文 参考訳(メタデータ) (2021-05-17T19:36:28Z) - Pixel-Level Cycle Association: A New Perspective for Domain Adaptive
Semantic Segmentation [169.82760468633236]
本稿では,ソースとターゲットの画素ペア間の画素レベルサイクルの関連性を構築することを提案する。
我々の手法は1段階のエンドツーエンドで訓練でき、追加のパラメータは導入しない。
論文 参考訳(メタデータ) (2020-10-31T00:11:36Z) - Consistency Regularization with High-dimensional Non-adversarial
Source-guided Perturbation for Unsupervised Domain Adaptation in Segmentation [15.428323201750144]
BiSIDAは、未ラベルのターゲットデータセットからの情報を効率的に活用するために、一貫性の正則化を採用している。
BiSIDAは、一般的に使われている2つの合成-実領域適応ベンチマーク上で、新しい最先端を実現する。
論文 参考訳(メタデータ) (2020-09-18T03:26:44Z) - Unsupervised Intra-domain Adaptation for Semantic Segmentation through
Self-Supervision [73.76277367528657]
畳み込みニューラルネットワークに基づくアプローチは、セマンティックセグメンテーションにおいて顕著な進歩を遂げた。
この制限に対処するために、グラフィックエンジンから生成された注釈付きデータを使用してセグメンテーションモデルをトレーニングする。
ドメイン間およびドメイン間ギャップを最小化する2段階の自己教師付きドメイン適応手法を提案する。
論文 参考訳(メタデータ) (2020-04-16T15:24:11Z) - FDA: Fourier Domain Adaptation for Semantic Segmentation [82.4963423086097]
本稿では,教師なし領域適応の簡易な手法について述べる。一方の低周波スペクトルを他方と交換することにより,音源と対象分布の相違を低減できる。
本手法を意味的セグメンテーション(semantic segmentation, 意味的セグメンテーション, 意味的セグメンテーション)で説明する。
以上の結果から,より高度な手法が学習に苦しむデータにおいて,単純な手順であってもニュアンス変動を低減できる可能性が示唆された。
論文 参考訳(メタデータ) (2020-04-11T22:20:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。