LRDDv2: Enhanced Long-Range Drone Detection Dataset with Range Information and Comprehensive Real-World Challenges
- URL: http://arxiv.org/abs/2508.03331v1
- Date: Tue, 05 Aug 2025 11:16:20 GMT
- Title: LRDDv2: Enhanced Long-Range Drone Detection Dataset with Range Information and Comprehensive Real-World Challenges
- Authors: Amirreza Rouhi, Sneh Patel, Noah McCarthy, Siddiqa Khan, Hadi Khorsand, Kaleb Lefkowitz, David K. Han,
- Abstract summary: Long Range Drone Detection dataset comprises 39,516 meticulously annotated images.<n>LRDDv2 dataset includes target range information for over 8,000 images.<n>Majority of LRDDv2's dataset consists of images capturing drones with 50 or fewer pixels in 1080p resolution.
- Score: 6.438341026747921
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The exponential growth in Unmanned Aerial Vehicles (UAVs) usage underscores the critical need of detecting them at extended distances to ensure safe operations, especially in densely populated areas. Despite the tremendous advances made in computer vision through deep learning, the detection of these small airborne objects remains a formidable challenge. While several datasets have been developed specifically for drone detection, the need for a more extensive and diverse collection of drone image data persists, particularly for long-range detection under varying environmental conditions. We introduce here the Long Range Drone Detection (LRDD) Version 2 dataset, comprising 39,516 meticulously annotated images, as a second release of the LRDD dataset released previously. The LRDDv2 dataset enhances the LRDDv1 by incorporating a greater variety of images, providing a more diverse and comprehensive resource for drone detection research. What sets LRDDv2 apart is its inclusion of target range information for over 8,000 images, making it possible to develop algorithms for drone range estimation. Tailored for long-range aerial object detection, the majority of LRDDv2's dataset consists of images capturing drones with 50 or fewer pixels in 1080p resolution. For access to the complete Long-Range Drone Detection Dataset (LRDD)v2, please visit https://research.coe.drexel.edu/ece/imaple/lrddv2/ .
Related papers
- YOLOMG: Vision-based Drone-to-Drone Detection with Appearance and Pixel-Level Motion Fusion [9.810747004677474]
This paper proposes a novel end-to-end framework that accurately identifies small drones in complex environments.<n>It starts by creating a motion difference map to capture the motion characteristics of tiny drones.<n>Next, this motion difference map is combined with an RGB image using a bimodal fusion module, allowing for adaptive feature learning of the drone.
arXiv Detail & Related papers (2025-03-10T09:44:21Z) - Neuromorphic Drone Detection: an Event-RGB Multimodal Approach [25.26674905726921]
Neuromorphic cameras can retain precise and rich-temporal information in situations that are challenging for RGB cameras.
We present a novel model for integrating both domains together, leveraging multimodal data.
We also release NeRDD (Neuromorphic-RGB Drone Detection), a novel-temporally Event synchronized-RGB Drone detection dataset.
arXiv Detail & Related papers (2024-09-24T13:53:20Z) - SARDet-100K: Towards Open-Source Benchmark and ToolKit for Large-Scale SAR Object Detection [79.23689506129733]
We establish a new benchmark dataset and an open-source method for large-scale SAR object detection.
Our dataset, SARDet-100K, is a result of intense surveying, collecting, and standardizing 10 existing SAR detection datasets.
To the best of our knowledge, SARDet-100K is the first COCO-level large-scale multi-class SAR object detection dataset ever created.
arXiv Detail & Related papers (2024-03-11T09:20:40Z) - VDD: Varied Drone Dataset for Semantic Segmentation [9.581655974280217]
We release a large-scale, densely labeled collection of 400 high-resolution images spanning 7 classes.<n>This dataset features various scenes in urban, industrial, rural, and natural areas, captured from different camera angles and under diverse lighting conditions.<n>We train seven state-of-the-art models on drone datasets as baselines.
arXiv Detail & Related papers (2023-05-23T02:16:14Z) - Super Sparse 3D Object Detection [48.684300007948906]
LiDAR-based 3D object detection contributes ever-increasingly to the long-range perception in autonomous driving.
To enable efficient long-range detection, we first propose a fully sparse object detector termed FSD.
FSD++ generates residual points, which indicate the point changes between consecutive frames.
arXiv Detail & Related papers (2023-01-05T17:03:56Z) - A dataset for multi-sensor drone detection [67.75999072448555]
The use of small and remotely controlled unmanned aerial vehicles (UAVs) has increased in recent years.
Most studies on drone detection fail to specify the type of acquisition device, the drone type, the detection range, or the dataset.
We contribute with an annotated multi-sensor database for drone detection that includes infrared and visible videos and audio files.
arXiv Detail & Related papers (2021-11-02T20:52:03Z) - TJU-DHD: A Diverse High-Resolution Dataset for Object Detection [48.94731638729273]
Large-scale, rich-diversity, and high-resolution datasets play an important role in developing better object detection methods.
We build a diverse high-resolution dataset (called TJU-DHD)
The dataset contains 115,354 high-resolution images and 709,330 labeled objects with a large variance in scale and appearance.
arXiv Detail & Related papers (2020-11-18T09:32:24Z) - Drone-based RGB-Infrared Cross-Modality Vehicle Detection via
Uncertainty-Aware Learning [59.19469551774703]
Drone-based vehicle detection aims at finding the vehicle locations and categories in an aerial image.
We construct a large-scale drone-based RGB-Infrared vehicle detection dataset, termed DroneVehicle.
Our DroneVehicle collects 28, 439 RGB-Infrared image pairs, covering urban roads, residential areas, parking lots, and other scenarios from day to night.
arXiv Detail & Related papers (2020-03-05T05:29:44Z) - Detection and Tracking Meet Drones Challenge [131.31749447313197]
This paper presents a review of object detection and tracking datasets and benchmarks, and discusses the challenges of collecting large-scale drone-based object detection and tracking datasets with manual annotations.
We describe our VisDrone dataset, which is captured over various urban/suburban areas of 14 different cities across China from North to South.
We provide a detailed analysis of the current state of the field of large-scale object detection and tracking on drones, and conclude the challenge as well as propose future directions.
arXiv Detail & Related papers (2020-01-16T00:11:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.