CTTS: Collective Test-Time Scaling
- URL: http://arxiv.org/abs/2508.03333v1
- Date: Tue, 05 Aug 2025 11:19:08 GMT
- Title: CTTS: Collective Test-Time Scaling
- Authors: Zhende Song, Shengji Tang, Peng Ye, Jiayuan Fan, Tao Chen,
- Abstract summary: We take a first step towards exploring Collective Test-Time Scaling (CTTS)<n>Consider the different interaction types of single and multiple models.<n>We propose a novel framework named CTTS-MM that effectively leverages both multi-agent and multi-reward-model collaboration.
- Score: 11.575072390128309
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Test-time scaling (TTS) has emerged as a promising research field for enhancing the effectiveness of large language models (LLMs) without extra training. However, most existing approaches, e.g., Best-of-N and Self-Consistency rely on a single agent interacting with a reward model (SA-SR), constrained by limited capabilities of a single test-time scaling (STTS) paradigm. On the other hand, recent works demonstrate that collective-agent methods can break through the upper bound of single-agent systems by orchestrating diverse models. Thus, in this paper, we take a first step towards exploring Collective Test-Time Scaling (CTTS). Consider the different interaction types of single and multiple models, we design three primary paradigms to investigate the optimal paradigm of CTTS: (1) single agent to multiple reward models (SA-MR); (2) multiple agents to single reward model (MA-SR); and (3) multiple agents to multiple reward models (MA-MR). Extensive experiments demonstrate that MA-MR consistently achieves the best performance. Based on this, we propose a novel framework named CTTS-MM that effectively leverages both multi-agent and multi-reward-model collaboration for enhanced inference. Specifically, for multi-agent collaboration, we propose an Agent Collaboration Search (ACS), which searches for the most effective combination of LLM agents from a large candidate pool; for multi-reward-model collaboration, we propose Mixture of Reword Models (MoR), which consists of a curated question pool and a Prior Reward model Ensemble Selection (PRES) to select the optimal combinations of reward models via Pair-wise Reward Ranking (PRR) metric. Experiments across seven mainstream benchmarks demonstrate that the proposed CTTS-MM consistently obtains superior performance. Code will be released at https://github.com/magent4aci/CTTS-MM.
Related papers
- Unifying Multimodal Large Language Model Capabilities and Modalities via Model Merging [103.98582374569789]
Model merging aims to combine multiple expert models into a single model, thereby reducing storage and serving costs.<n>Previous studies have primarily focused on merging visual classification models or Large Language Models (LLMs) for code and math tasks.<n>We introduce the model merging benchmark for MLLMs, which includes multiple tasks such as VQA, Geometry, Chart, OCR, and Grounding, providing both LoRA and full fine-tuning models.
arXiv Detail & Related papers (2025-05-26T12:23:14Z) - Two Heads are Better Than One: Test-time Scaling of Multi-agent Collaborative Reasoning [29.580108004844856]
Multi-agent systems (MAS) built on large language models (LLMs) offer a promising path toward solving complex, real-world tasks.<n>Recent advancements in test-time scaling (TTS) have significantly improved single-agent performance on challenging reasoning tasks.<n>We introduce an adaptive multi-agent framework designed to enhance collaborative reasoning through both model-level training and system-level coordination.
arXiv Detail & Related papers (2025-04-14T00:27:45Z) - Collab: Controlled Decoding using Mixture of Agents for LLM Alignment [90.6117569025754]
Reinforcement learning from human feedback has emerged as an effective technique to align Large Language models.<n>Controlled Decoding provides a mechanism for aligning a model at inference time without retraining.<n>We propose a mixture of agent-based decoding strategies leveraging the existing off-the-shelf aligned LLM policies.
arXiv Detail & Related papers (2025-03-27T17:34:25Z) - Boosting Virtual Agent Learning and Reasoning: A Step-Wise, Multi-Dimensional, and Generalist Reward Model with Benchmark [72.46357004059661]
Generalist Virtual Agents (GVAs) have shown significant promise in autonomous task execution.<n>To address these challenges, we propose Similar, a Step-Wise Multi-Dimensional Generalist Reward Model.<n>Similar offers fine-grained signals for agent training and can choose better action for inference-time scaling.
arXiv Detail & Related papers (2025-03-24T13:30:47Z) - VisualPRM: An Effective Process Reward Model for Multimodal Reasoning [76.35753243272521]
We introduce VisualPRM, which improves the reasoning abilities of existing Multimodal Large Language Models (MLLMs)<n>Our model achieves a 5.9-point improvement across seven multimodal reasoning benchmarks.<n>For the evaluation of multimodal PRMs, we propose VisualProcessBench, a benchmark with human-annotated step-wise correctness labels.
arXiv Detail & Related papers (2025-03-13T12:03:37Z) - Multi-Agent Sampling: Scaling Inference Compute for Data Synthesis with Tree Search-Based Agentic Collaboration [81.45763823762682]
This work aims to bridge the gap by investigating the problem of data synthesis through multi-agent sampling.<n>We introduce Tree Search-based Orchestrated Agents(TOA), where the workflow evolves iteratively during the sequential sampling process.<n>Our experiments on alignment, machine translation, and mathematical reasoning demonstrate that multi-agent sampling significantly outperforms single-agent sampling as inference compute scales.
arXiv Detail & Related papers (2024-12-22T15:16:44Z) - Towards Robust Multi-Modal Reasoning via Model Selection [7.6621866737827045]
LLM serves as the "brain" of the agent, orchestrating multiple tools for collaborative multi-step task solving.
We propose the $textitM3$ framework as a plug-in with negligible runtime overhead at test-time.
Our experiments reveal that our framework enables dynamic model selection, considering both user inputs and subtask dependencies.
arXiv Detail & Related papers (2023-10-12T16:06:18Z) - Multipath agents for modular multitask ML systems [2.579908688646812]
The presented work introduces a novel methodology allowing to define multiple methods as distinct agents.
Agents can collaborate and compete to generate and improve ML models for a given tasks.
arXiv Detail & Related papers (2023-02-06T11:57:45Z) - Model ensemble instead of prompt fusion: a sample-specific knowledge
transfer method for few-shot prompt tuning [85.55727213502402]
We focus on improving the few-shot performance of prompt tuning by transferring knowledge from soft prompts of source tasks.
We propose Sample-specific Ensemble of Source Models (SESoM)
SESoM learns to adjust the contribution of each source model for each target sample separately when ensembling source model outputs.
arXiv Detail & Related papers (2022-10-23T01:33:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.