Towards Robust Multi-Modal Reasoning via Model Selection
- URL: http://arxiv.org/abs/2310.08446v2
- Date: Sat, 23 Mar 2024 14:01:39 GMT
- Title: Towards Robust Multi-Modal Reasoning via Model Selection
- Authors: Xiangyan Liu, Rongxue Li, Wei Ji, Tao Lin,
- Abstract summary: LLM serves as the "brain" of the agent, orchestrating multiple tools for collaborative multi-step task solving.
We propose the $textitM3$ framework as a plug-in with negligible runtime overhead at test-time.
Our experiments reveal that our framework enables dynamic model selection, considering both user inputs and subtask dependencies.
- Score: 7.6621866737827045
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The reasoning capabilities of LLM (Large Language Model) are widely acknowledged in recent research, inspiring studies on tool learning and autonomous agents. LLM serves as the "brain" of the agent, orchestrating multiple tools for collaborative multi-step task solving. Unlike methods invoking tools like calculators or weather APIs for straightforward tasks, multi-modal agents excel by integrating diverse AI models for complex challenges. However, current multi-modal agents neglect the significance of model selection: they primarily focus on the planning and execution phases, and will only invoke predefined task-specific models for each subtask, making the execution fragile. Meanwhile, other traditional model selection methods are either incompatible with or suboptimal for the multi-modal agent scenarios, due to ignorance of dependencies among subtasks arising by multi-step reasoning. To this end, we identify the key challenges therein and propose the $\textit{M}^3$ framework as a plug-in with negligible runtime overhead at test-time. This framework improves model selection and bolsters the robustness of multi-modal agents in multi-step reasoning. In the absence of suitable benchmarks, we create MS-GQA, a new dataset specifically designed to investigate the model selection challenge in multi-modal agents. Our experiments reveal that our framework enables dynamic model selection, considering both user inputs and subtask dependencies, thereby robustifying the overall reasoning process. Our code and benchmark: https://github.com/LINs-lab/M3.
Related papers
- UniMEL: A Unified Framework for Multimodal Entity Linking with Large Language Models [0.42832989850721054]
Multimodal Entities Linking (MEL) is a crucial task that aims at linking ambiguous mentions within multimodal contexts to referent entities in a multimodal knowledge base, such as Wikipedia.
Existing methods overcomplicate the MEL task and overlook the visual semantic information, which makes them costly and hard to scale.
We propose UniMEL, a unified framework which establishes a new paradigm to process multimodal entity linking tasks using Large Language Models.
arXiv Detail & Related papers (2024-07-23T03:58:08Z) - Smurfs: Leveraging Multiple Proficiency Agents with Context-Efficiency for Tool Planning [14.635361844362794]
Smurfs' is a cutting-edge multi-agent framework designed to revolutionize the application of large language models.
Smurfs can enhance the model's ability to solve complex tasks at no additional cost.
arXiv Detail & Related papers (2024-05-09T17:49:04Z) - Model Composition for Multimodal Large Language Models [71.5729418523411]
We propose a new paradigm through the model composition of existing MLLMs to create a new model that retains the modal understanding capabilities of each original model.
Our basic implementation, NaiveMC, demonstrates the effectiveness of this paradigm by reusing modality encoders and merging LLM parameters.
arXiv Detail & Related papers (2024-02-20T06:38:10Z) - Merging Multi-Task Models via Weight-Ensembling Mixture of Experts [64.94129594112557]
Merging Transformer-based models trained on different tasks into a single unified model can execute all the tasks concurrently.
Previous methods, exemplified by task arithmetic, have been proven to be both effective and scalable.
We propose to merge most of the parameters while upscaling the Transformer layers to a weight-ensembling mixture of experts (MoE) module.
arXiv Detail & Related papers (2024-02-01T08:58:57Z) - Toward Robust Multimodal Learning using Multimodal Foundational Models [30.755818450393637]
We propose TRML, Toward Robust Multimodal Learning using Multimodal Foundational Models.
TRML employs generated virtual modalities to replace missing modalities.
We also design a semantic matching learning module to align semantic spaces generated and missing modalities.
arXiv Detail & Related papers (2024-01-20T04:46:43Z) - Generative Multimodal Models are In-Context Learners [60.50927925426832]
We introduce Emu2, a generative multimodal model with 37 billion parameters, trained on large-scale multimodal sequences.
Emu2 exhibits strong multimodal in-context learning abilities, even emerging to solve tasks that require on-the-fly reasoning.
arXiv Detail & Related papers (2023-12-20T18:59:58Z) - Multipath agents for modular multitask ML systems [2.579908688646812]
The presented work introduces a novel methodology allowing to define multiple methods as distinct agents.
Agents can collaborate and compete to generate and improve ML models for a given tasks.
arXiv Detail & Related papers (2023-02-06T11:57:45Z) - OFASys: A Multi-Modal Multi-Task Learning System for Building Generalist
Models [72.8156832931841]
Generalist models are capable of performing diverse multi-modal tasks in a task-agnostic way within a single model.
We release a generalist model learning system, OFASys, built on top of a declarative task interface named multi-modal instruction.
arXiv Detail & Related papers (2022-12-08T17:07:09Z) - Conditional Generative Modeling via Learning the Latent Space [54.620761775441046]
We propose a novel framework for conditional generation in multimodal spaces.
It uses latent variables to model generalizable learning patterns.
At inference, the latent variables are optimized to find optimal solutions corresponding to multiple output modes.
arXiv Detail & Related papers (2020-10-07T03:11:34Z) - ManyModalQA: Modality Disambiguation and QA over Diverse Inputs [73.93607719921945]
We present a new multimodal question answering challenge, ManyModalQA, in which an agent must answer a question by considering three distinct modalities.
We collect our data by scraping Wikipedia and then utilize crowdsourcing to collect question-answer pairs.
arXiv Detail & Related papers (2020-01-22T14:39:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.