論文の概要: GL-LCM: Global-Local Latent Consistency Models for Fast High-Resolution Bone Suppression in Chest X-Ray Images
- arxiv url: http://arxiv.org/abs/2508.03357v1
- Date: Tue, 05 Aug 2025 12:02:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-06 18:18:55.944346
- Title: GL-LCM: Global-Local Latent Consistency Models for Fast High-Resolution Bone Suppression in Chest X-Ray Images
- Title(参考訳): GL-LCM:胸部X線画像における高速高分解能骨抑制のためのグローバル局所潜時整合モデル
- Authors: Yifei Sun, Zhanghao Chen, Hao Zheng, Yuqing Lu, Lixin Duan, Fenglei Fan, Ahmed Elazab, Xiang Wan, Changmiao Wang, Ruiquan Ge,
- Abstract要約: 肺疾患診断のための胸部X線撮影(CXR)は、骨構造が正確な診断に必要な重要な詳細を曖昧にするため、大きな課題を提起する。
近年のディープラーニング、特に拡散モデルによる進歩は、CXR画像における骨構造の視認性を効果的に最小化するための重要な約束を提供する。
CXR画像における高速な高分解能骨抑制を実現するため,肺分画,デュアルパスサンプリング,グローバル局所核融合を組み合わせたGlobal-Local Latent Consistency Model (GL-LCM) アーキテクチャを導入する。
- 参考スコア(独自算出の注目度): 32.23697240380478
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Chest X-Ray (CXR) imaging for pulmonary diagnosis raises significant challenges, primarily because bone structures can obscure critical details necessary for accurate diagnosis. Recent advances in deep learning, particularly with diffusion models, offer significant promise for effectively minimizing the visibility of bone structures in CXR images, thereby improving clarity and diagnostic accuracy. Nevertheless, existing diffusion-based methods for bone suppression in CXR imaging struggle to balance the complete suppression of bones with preserving local texture details. Additionally, their high computational demand and extended processing time hinder their practical use in clinical settings. To address these limitations, we introduce a Global-Local Latent Consistency Model (GL-LCM) architecture. This model combines lung segmentation, dual-path sampling, and global-local fusion, enabling fast high-resolution bone suppression in CXR images. To tackle potential boundary artifacts and detail blurring in local-path sampling, we further propose Local-Enhanced Guidance, which addresses these issues without additional training. Comprehensive experiments on a self-collected dataset SZCH-X-Rays, and the public dataset JSRT, reveal that our GL-LCM delivers superior bone suppression and remarkable computational efficiency, significantly outperforming several competitive methods. Our code is available at https://github.com/diaoquesang/GL-LCM.
- Abstract(参考訳): 肺疾患診断のための胸部X線撮影(CXR)は、骨構造が正確な診断に必要な重要な詳細を曖昧にするため、大きな課題を提起する。
近年の深層学習の進歩、特に拡散モデルでは、CXR画像における骨構造の視認性を効果的に最小化し、明瞭さと診断精度を向上させることが約束されている。
それでも、CXR画像における既存の拡散に基づく骨抑制法は、骨の完全な抑制と局所的なテクスチャの詳細な保存のバランスをとるのに苦労している。
さらに、その高い計算需要と処理時間の延長は、臨床環境での実践を妨げている。
これらの制約に対処するために,Global-Local Latent Consistency Model (GL-LCM) アーキテクチャを導入する。
このモデルは肺の分節、二重経路サンプリング、局所核融合を組み合わせ、CXR画像における高速な高分解能骨抑制を可能にする。
局所経路サンプリングにおける潜在的な境界アーチファクトと細かなぼかしに対処するため,さらに局所拡張ガイダンスを提案し,これらの問題に追加のトレーニングを伴わずに対処する。
自己収集したデータセットSZCH-X-Raysと公開データセットJSRTの総合的な実験により、我々のGL-LCMが優れた骨抑制と卓越した計算効率を提供し、いくつかの競争力のある手法を著しく上回っていることが明らかとなった。
私たちのコードはhttps://github.com/diaoquesang/GL-LCM.comで利用可能です。
関連論文リスト
- BS-LDM: Effective Bone Suppression in High-Resolution Chest X-Ray Images with Conditional Latent Diffusion Models [23.830681949520745]
肺疾患は、Chest X-Ray(CXR)が重要な診断ツールであると共に、重要な世界的な健康上の課題である。
肺病変の検出は、しばしばCXR画像の重なり合う骨構造によって妨げられ、潜在的な誤診につながる。
我々は,高解像度CXR画像の骨を効果的に抑制するために,BS-LDMと呼ばれるエンドツーエンドのフレームワークを開発した。
論文 参考訳(メタデータ) (2024-12-20T08:36:17Z) - A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
様々な計測アンサンプパターンと画像解像度に頑健な統合MRI再構成モデルを提案する。
我々のモデルは、拡散法よりも600$times$高速な推論で、最先端CNN(End-to-End VarNet)の4dBでSSIMを11%改善し、PSNRを4dB改善する。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - BLS-GAN: A Deep Layer Separation Framework for Eliminating Bone Overlap in Conventional Radiographs [4.295284976294471]
従来のX線写真では、骨の重なり合いが一般的であり、骨特性の正確な評価を妨げる可能性がある。
本研究では,高品質な骨層画像を生成する骨層分離GANフレームワークを提案する。
生成された画像はビジュアルチューリングテストに合格し、下流タスクのパフォーマンスが向上した。
論文 参考訳(メタデータ) (2024-09-11T14:34:17Z) - Low-Resolution Chest X-ray Classification via Knowledge Distillation and Multi-task Learning [46.75992018094998]
胸部X線(CXR)を低分解能で診断する上での課題について検討した。
高分解能CXRイメージングは、結節や不透明など、小さなが重要な異常を識別するために重要である。
本稿では,MLCAK(Multilevel Collaborative Attention Knowledge)法を提案する。
論文 参考訳(メタデータ) (2024-05-22T06:10:54Z) - BS-Diff: Effective Bone Suppression Using Conditional Diffusion Models
from Chest X-Ray Images [21.19843479423806]
胸部X線(CXR)は肺検診の低用量モダリティとして一般的に用いられる。
肺領域の約75%は骨と重なり、疾患の検出と診断を妨げている。
骨抑制技術が導入されたが、現在の病院の二重エネルギーサブトラクションイメージング技術は、高価な機器と高放射線にさらされる被検体を必要としている。
本稿では,U-Netアーキテクチャを備えた条件拡散モデルと,オートエンコーダを組み込むシンプルな拡張モジュールを備える骨抑制フレームワークBS-Diffを提案する。
論文 参考訳(メタデータ) (2023-11-26T15:13:13Z) - Cross-Modal Causal Intervention for Medical Report Generation [107.76649943399168]
放射線医学報告生成(RRG)は, コンピュータ支援診断と薬剤指導に不可欠である。
視覚言語的バイアスによる急激な相関により、正確な病変記述の生成は依然として困難である。
我々はCrossModal Causal Representation Learning (CMCRL)という2段階のフレームワークを提案する。
IU-XrayとMIMIC-CXRの実験により、我々のCMCRLパイプラインは最先端の手法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2023-03-16T07:23:55Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - Weakly-Supervised Universal Lesion Segmentation with Regional Level Set
Loss [16.80758525711538]
高分解能ネットワーク(HRNet)に基づく新しい弱監督ユニバーサル病変分割法を提案する。
AHRNetはデコーダ、デュアルアテンション、スケールアテンション機構を含む高度な高解像度のディープイメージ機能を提供する。
本手法は,公開大規模deeplesionデータセットとホールドアウトテストセットにおいて,最高の性能を実現する。
論文 参考訳(メタデータ) (2021-05-03T23:33:37Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
CT画像からの肺感染症の自動検出は、新型コロナウイルスに対処するための従来の医療戦略を強化する大きな可能性を秘めている。
CTスライスから感染領域を分割することは、高い感染特性の変化、感染と正常な組織の間の低強度のコントラストなど、いくつかの課題に直面している。
これらの課題に対処するため, 胸部CTスライスから感染部位を自動的に同定する, 新型のCOVID-19 Deep Lung infection Network (Inf-Net) が提案されている。
論文 参考訳(メタデータ) (2020-04-22T07:30:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。