When Good Sounds Go Adversarial: Jailbreaking Audio-Language Models with Benign Inputs
- URL: http://arxiv.org/abs/2508.03365v1
- Date: Tue, 05 Aug 2025 12:14:01 GMT
- Title: When Good Sounds Go Adversarial: Jailbreaking Audio-Language Models with Benign Inputs
- Authors: Bodam Kim, Hiskias Dingeto, Taeyoun Kwon, Dasol Choi, DongGeon Lee, Haon Park, JaeHoon Lee, Jongho Shin,
- Abstract summary: Our research introduces WhisperInject, a two-stage adversarial audio attack framework.<n>It can manipulate state-of-the-art audio language models to generate harmful content.<n>Our method uses imperceptible perturbations in audio inputs that remain benign to human listeners.
- Score: 1.911526481015
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: As large language models become increasingly integrated into daily life, audio has emerged as a key interface for human-AI interaction. However, this convenience also introduces new vulnerabilities, making audio a potential attack surface for adversaries. Our research introduces WhisperInject, a two-stage adversarial audio attack framework that can manipulate state-of-the-art audio language models to generate harmful content. Our method uses imperceptible perturbations in audio inputs that remain benign to human listeners. The first stage uses a novel reward-based optimization method, Reinforcement Learning with Projected Gradient Descent (RL-PGD), to guide the target model to circumvent its own safety protocols and generate harmful native responses. This native harmful response then serves as the target for Stage 2, Payload Injection, where we use Projected Gradient Descent (PGD) to optimize subtle perturbations that are embedded into benign audio carriers, such as weather queries or greeting messages. Validated under the rigorous StrongREJECT, LlamaGuard, as well as Human Evaluation safety evaluation framework, our experiments demonstrate a success rate exceeding 86% across Qwen2.5-Omni-3B, Qwen2.5-Omni-7B, and Phi-4-Multimodal. Our work demonstrates a new class of practical, audio-native threats, moving beyond theoretical exploits to reveal a feasible and covert method for manipulating AI behavior.
Related papers
- Wolf Hidden in Sheep's Conversations: Toward Harmless Data-Based Backdoor Attacks for Jailbreaking Large Language Models [69.11679786018206]
Supervised fine-tuning (SFT) aligns large language models with human intent by training them on labeled task-specific data.<n>Recent studies have shown that malicious attackers can inject backdoors into these models by embedding triggers into the harmful question-answer pairs.<n>We propose a novel clean-data backdoor attack for jailbreaking LLMs.
arXiv Detail & Related papers (2025-05-23T08:13:59Z) - Exploiting Vulnerabilities in Speech Translation Systems through Targeted Adversarial Attacks [59.87470192277124]
This paper explores methods of compromising speech translation systems through imperceptible audio manipulations.<n>We present two innovative approaches: (1) the injection of perturbation into source audio, and (2) the generation of adversarial music designed to guide targeted translation.<n>Our experiments reveal that carefully crafted audio perturbations can mislead translation models to produce targeted, harmful outputs, while adversarial music achieve this goal more covertly.<n>The implications of this research extend beyond immediate security concerns, shedding light on the interpretability and robustness of neural speech processing systems.
arXiv Detail & Related papers (2025-03-02T16:38:16Z) - "I am bad": Interpreting Stealthy, Universal and Robust Audio Jailbreaks in Audio-Language Models [0.9480364746270077]
This paper explores audio jailbreaks targeting Audio-Language Models (ALMs)<n>We construct adversarial perturbations that generalize across prompts, tasks, and even base audio samples.<n>We analyze how ALMs interpret these audio adversarial examples and reveal them to encode imperceptible first-person toxic speech.
arXiv Detail & Related papers (2025-02-02T08:36:23Z) - Who Can Withstand Chat-Audio Attacks? An Evaluation Benchmark for Large Audio-Language Models [60.72029578488467]
Adrial audio attacks pose a significant threat to the growing use of large audio-language models (LALMs) in human-machine interactions.<n>We introduce the Chat-Audio Attacks benchmark including four distinct types of audio attacks.<n>We evaluate six state-of-the-art LALMs with voice interaction capabilities, including Gemini-1.5-Pro, GPT-4o, and others.
arXiv Detail & Related papers (2024-11-22T10:30:48Z) - FlowMur: A Stealthy and Practical Audio Backdoor Attack with Limited Knowledge [13.43804949744336]
FlowMur is a stealthy and practical audio backdoor attack that can be launched with limited knowledge.
Experiments conducted on two datasets demonstrate that FlowMur achieves high attack performance in both digital and physical settings.
arXiv Detail & Related papers (2023-12-15T10:26:18Z) - Robust Safety Classifier for Large Language Models: Adversarial Prompt
Shield [7.5520641322945785]
Large Language Models' safety remains a critical concern due to their vulnerability to adversarial attacks.
We introduce the Adversarial Prompt Shield (APS), a lightweight model that excels in detection accuracy and demonstrates resilience against adversarial prompts.
We also propose novel strategies for autonomously generating adversarial training datasets.
arXiv Detail & Related papers (2023-10-31T22:22:10Z) - Defense Against Adversarial Attacks on Audio DeepFake Detection [0.4511923587827302]
Audio DeepFakes (DF) are artificially generated utterances created using deep learning.
Multiple neural network-based methods to detect generated speech have been proposed to prevent the threats.
arXiv Detail & Related papers (2022-12-30T08:41:06Z) - Push-Pull: Characterizing the Adversarial Robustness for Audio-Visual
Active Speaker Detection [88.74863771919445]
We reveal the vulnerability of AVASD models under audio-only, visual-only, and audio-visual adversarial attacks.
We also propose a novel audio-visual interaction loss (AVIL) for making attackers difficult to find feasible adversarial examples.
arXiv Detail & Related papers (2022-10-03T08:10:12Z) - Wav2vec-Switch: Contrastive Learning from Original-noisy Speech Pairs
for Robust Speech Recognition [52.71604809100364]
We propose wav2vec-Switch, a method to encode noise robustness into contextualized representations of speech.
Specifically, we feed original-noisy speech pairs simultaneously into the wav2vec 2.0 network.
In addition to the existing contrastive learning task, we switch the quantized representations of the original and noisy speech as additional prediction targets.
arXiv Detail & Related papers (2021-10-11T00:08:48Z) - Characterizing Speech Adversarial Examples Using Self-Attention U-Net
Enhancement [102.48582597586233]
We present a U-Net based attention model, U-Net$_At$, to enhance adversarial speech signals.
We conduct experiments on the automatic speech recognition (ASR) task with adversarial audio attacks.
arXiv Detail & Related papers (2020-03-31T02:16:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.