Defense Against Adversarial Attacks on Audio DeepFake Detection
- URL: http://arxiv.org/abs/2212.14597v2
- Date: Sat, 10 Jun 2023 18:48:55 GMT
- Title: Defense Against Adversarial Attacks on Audio DeepFake Detection
- Authors: Piotr Kawa, Marcin Plata, Piotr Syga
- Abstract summary: Audio DeepFakes (DF) are artificially generated utterances created using deep learning.
Multiple neural network-based methods to detect generated speech have been proposed to prevent the threats.
- Score: 0.4511923587827302
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Audio DeepFakes (DF) are artificially generated utterances created using deep
learning, with the primary aim of fooling the listeners in a highly convincing
manner. Their quality is sufficient to pose a severe threat in terms of
security and privacy, including the reliability of news or defamation. Multiple
neural network-based methods to detect generated speech have been proposed to
prevent the threats. In this work, we cover the topic of adversarial attacks,
which decrease the performance of detectors by adding superficial (difficult to
spot by a human) changes to input data. Our contribution contains evaluating
the robustness of 3 detection architectures against adversarial attacks in two
scenarios (white-box and using transferability) and enhancing it later by using
adversarial training performed by our novel adaptive training. Moreover, one of
the investigated architectures is RawNet3, which, to the best of our knowledge,
we adapted for the first time to DeepFake detection.
Related papers
- Investigating Human-Identifiable Features Hidden in Adversarial
Perturbations [54.39726653562144]
Our study explores up to five attack algorithms across three datasets.
We identify human-identifiable features in adversarial perturbations.
Using pixel-level annotations, we extract such features and demonstrate their ability to compromise target models.
arXiv Detail & Related papers (2023-09-28T22:31:29Z) - A Comprehensive Study of the Robustness for LiDAR-based 3D Object
Detectors against Adversarial Attacks [84.10546708708554]
3D object detectors are increasingly crucial for security-critical tasks.
It is imperative to understand their robustness against adversarial attacks.
This paper presents the first comprehensive evaluation and analysis of the robustness of LiDAR-based 3D detectors under adversarial attacks.
arXiv Detail & Related papers (2022-12-20T13:09:58Z) - Detecting Backdoors in Deep Text Classifiers [43.36440869257781]
We present the first robust defence mechanism that generalizes to several backdoor attacks against text classification models.
Our technique is highly accurate at defending against state-of-the-art backdoor attacks, including data poisoning and weight poisoning.
arXiv Detail & Related papers (2022-10-11T07:48:03Z) - Illusory Attacks: Information-Theoretic Detectability Matters in Adversarial Attacks [76.35478518372692]
We introduce epsilon-illusory, a novel form of adversarial attack on sequential decision-makers.
Compared to existing attacks, we empirically find epsilon-illusory to be significantly harder to detect with automated methods.
Our findings suggest the need for better anomaly detectors, as well as effective hardware- and system-level defenses.
arXiv Detail & Related papers (2022-07-20T19:49:09Z) - Robust Federated Learning Against Adversarial Attacks for Speech Emotion
Recognition [12.024098046435796]
Speech data cannot be protected when uploaded and processed on servers in internet-of-things applications.
Deep neural networks have proven to be vulnerable to human-indistinguishable adversarial perturbations.
We propose a novel federated adversarial learning framework for protecting both data and deep neural networks.
arXiv Detail & Related papers (2022-03-09T13:19:26Z) - Where Did You Learn That From? Surprising Effectiveness of Membership
Inference Attacks Against Temporally Correlated Data in Deep Reinforcement
Learning [114.9857000195174]
A major challenge to widespread industrial adoption of deep reinforcement learning is the potential vulnerability to privacy breaches.
We propose an adversarial attack framework tailored for testing the vulnerability of deep reinforcement learning algorithms to membership inference attacks.
arXiv Detail & Related papers (2021-09-08T23:44:57Z) - Improving the Adversarial Robustness for Speaker Verification by Self-Supervised Learning [95.60856995067083]
This work is among the first to perform adversarial defense for ASV without knowing the specific attack algorithms.
We propose to perform adversarial defense from two perspectives: 1) adversarial perturbation purification and 2) adversarial perturbation detection.
Experimental results show that our detection module effectively shields the ASV by detecting adversarial samples with an accuracy of around 80%.
arXiv Detail & Related papers (2021-06-01T07:10:54Z) - An Empirical Review of Adversarial Defenses [0.913755431537592]
Deep neural networks, which form the basis of such systems, are highly susceptible to a specific type of attack, called adversarial attacks.
A hacker can, even with bare minimum computation, generate adversarial examples (images or data points that belong to another class, but consistently fool the model to get misclassified as genuine) and crumble the basis of such algorithms.
We show two effective techniques, namely Dropout and Denoising Autoencoders, and show their success in preventing such attacks from fooling the model.
arXiv Detail & Related papers (2020-12-10T09:34:41Z) - Backdoor Attack against Speaker Verification [86.43395230456339]
We show that it is possible to inject the hidden backdoor for infecting speaker verification models by poisoning the training data.
We also demonstrate that existing backdoor attacks cannot be directly adopted in attacking speaker verification.
arXiv Detail & Related papers (2020-10-22T11:10:08Z) - Adversarial Attack and Defense Strategies for Deep Speaker Recognition
Systems [44.305353565981015]
This paper considers several state-of-the-art adversarial attacks to a deep speaker recognition system, employing strong defense methods as countermeasures.
Experiments show that the speaker recognition systems are vulnerable to adversarial attacks, and the strongest attacks can reduce the accuracy of the system from 94% to even 0%.
arXiv Detail & Related papers (2020-08-18T00:58:19Z) - Adversarial Feature Desensitization [12.401175943131268]
We propose a novel approach to adversarial robustness, which builds upon the insights from the domain adaptation field.
Our method, called Adversarial Feature Desensitization (AFD), aims at learning features that are invariant towards adversarial perturbations of the inputs.
arXiv Detail & Related papers (2020-06-08T14:20:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.