論文の概要: A Comparative Study of Neurosymbolic AI Approaches to Interpretable Logical Reasoning
- arxiv url: http://arxiv.org/abs/2508.03366v1
- Date: Tue, 05 Aug 2025 12:14:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-06 18:18:55.949209
- Title: A Comparative Study of Neurosymbolic AI Approaches to Interpretable Logical Reasoning
- Title(参考訳): 論理的推論に対するニューロシンボリックAIアプローチの比較研究
- Authors: Michael K. Chen,
- Abstract要約: ドメインに依存しないタスクを推論する能力として定義された一般的な論理的推論は、大型言語モデル(LLM)の課題であり続けている。
近年、ニューラルネットワークに論理を組み込もうとするニューロシンボリックAIへの関心が高まっている。
まず、論理的推論を改善するための2つの主要なニューロシンボリックアプローチを同定する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: General logical reasoning, defined as the ability to reason deductively on domain-agnostic tasks, continues to be a challenge for large language models (LLMs). Current LLMs fail to reason deterministically and are not interpretable. As such, there has been a recent surge in interest in neurosymbolic AI, which attempts to incorporate logic into neural networks. We first identify two main neurosymbolic approaches to improving logical reasoning: (i) the integrative approach comprising models where symbolic reasoning is contained within the neural network, and (ii) the hybrid approach comprising models where a symbolic solver, separate from the neural network, performs symbolic reasoning. Both contain AI systems with promising results on domain-specific logical reasoning benchmarks. However, their performance on domain-agnostic benchmarks is understudied. To the best of our knowledge, there has not been a comparison of the contrasting approaches that answers the following question: Which approach is more promising for developing general logical reasoning? To analyze their potential, the following best-in-class domain-agnostic models are introduced: Logic Neural Network (LNN), which uses the integrative approach, and LLM-Symbolic Solver (LLM-SS), which uses the hybrid approach. Using both models as case studies and representatives of each approach, our analysis demonstrates that the hybrid approach is more promising for developing general logical reasoning because (i) its reasoning chain is more interpretable, and (ii) it retains the capabilities and advantages of existing LLMs. To support future works using the hybrid approach, we propose a generalizable framework based on LLM-SS that is modular by design, model-agnostic, domain-agnostic, and requires little to no human input.
- Abstract(参考訳): ドメインに依存しないタスクを推論する能力として定義された一般的な論理的推論は、大きな言語モデル(LLM)の課題であり続けている。
現在のLSMは決定論的に推論に失敗し、解釈できない。
このように、ニューラルネットワークに論理を組み込もうとするニューロシンボリックAIへの関心が高まっている。
まず、論理的推論を改善するための2つの主要なニューロシンボリックアプローチを特定します。
一 ニューラルネットワーク内に象徴的推論を含むモデルからなる統合的アプローチ及び
二 ニューラルネットワークから分離した記号解法が記号推論を行うモデルからなるハイブリッドアプローチ。
どちらも、ドメイン固有の論理推論ベンチマークに関する有望な結果を持つAIシステムを含んでいる。
しかし、ドメインに依存しないベンチマークのパフォーマンスは、未検討である。
私たちの知る限りでは、次のような疑問に答える対照的なアプローチの比較は行われていない: 一般的な論理的推論を開発する上で、どのアプローチがより有望なのか?
それらのポテンシャルを分析するために、統合的アプローチを用いた論理ニューラルネットワーク(LNN)とハイブリッドアプローチを用いたLLM-Symbolic Solver(LLM-SS)が導入された。
ケーススタディと各アプローチの代表者の両方のモデルを用いて、このハイブリッドアプローチは一般的な論理的推論を開発する上でより有望であることを示す。
(i)その推論連鎖はより解釈可能で、
(II)既存のLLMの機能と利点を維持している。
設計,モデル非依存,ドメイン非依存,人間の入力をほとんど必要とせず,モジュール化可能な LLM-SS に基づくフレームワークを提案する。
関連論文リスト
- CALM: Contextual Analog Logic with Multimodality [9.763339269757227]
マルチモーダル付き文脈アナログ論理(CALM)を導入する。
CALMは、シンボリック推論とニューラルジェネレーションを結合する。
これにより、システムは実世界のマルチモーダルデータに基づいてコンテキストに敏感な決定を下すことができる。
論文 参考訳(メタデータ) (2025-06-17T19:40:32Z) - LogiDynamics: Unraveling the Dynamics of Logical Inference in Large Language Model Reasoning [49.58786377307728]
本稿では、類似推論のための制御された評価環境を導入することにより、探索的アプローチを採用する。
帰納的,帰納的,帰納的,帰納的な推論パイプラインの比較力学を解析する。
仮説選択や検証,洗練といった高度なパラダイムを考察し,論理的推論のスケールアップの可能性を明らかにする。
論文 参考訳(メタデータ) (2025-02-16T15:54:53Z) - Logical Reasoning in Large Language Models: A Survey [17.06712393613964]
大規模言語モデル(LLM)における論理的推論の最近の進歩を合成する。
LLMにおける論理的推論の範囲、理論的基礎、および推論の習熟度を評価するために使用されるベンチマークについて概説する。
このレビューは、AIシステムにおける論理的推論を強化するためのさらなる調査の必要性を強調し、今後の方向性を結論付けている。
論文 参考訳(メタデータ) (2025-02-13T09:19:14Z) - Standard Neural Computation Alone Is Insufficient for Logical Intelligence [3.230778132936486]
論理的推論を統合するためには、標準的なニューラルネットワーク層を根本的に再考する必要がある、と我々は主張する。
論理演算の微分可能な近似を組み込んだ論理ニューラルネットワーク(LNU)モジュラーコンポーネントを提唱する。
論文 参考訳(メタデータ) (2025-02-04T09:07:45Z) - Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
コネクショニストと象徴的人工知能(AI)の収束を探求する記事
従来、コネクショナリストAIはニューラルネットワークにフォーカスし、シンボリックAIはシンボリック表現とロジックを強調していた。
大型言語モデル(LLM)の最近の進歩は、人間の言語をシンボルとして扱う際のコネクショナリストアーキテクチャの可能性を強調している。
論文 参考訳(メタデータ) (2024-07-11T14:00:53Z) - A Neuro-Symbolic Approach to Multi-Agent RL for Interpretability and
Probabilistic Decision Making [42.503612515214044]
マルチエージェント強化学習(MARL)は、複数のエージェントが共存し、共有リソースと競合するシステムにおいて、実行時の意思決定に適している。
ディープラーニングベースの一般的なMARLソリューションを実世界の問題に適用することは、解釈可能性、サンプル効率、部分観測可能性などの問題に悩まされる。
本稿では,ニューロシンボリック手法を用いて,意思決定を分散協調的MARLエージェントで処理するイベント駆動型定式化を提案する。
論文 参考訳(メタデータ) (2024-02-21T00:16:08Z) - LOGICSEG: Parsing Visual Semantics with Neural Logic Learning and
Reasoning [73.98142349171552]
LOGICSEGは、神経誘導学習と論理推論をリッチデータとシンボリック知識の両方に統合する、全体論的視覚意味論である。
ファジィ論理に基づく連続的な緩和の間、論理式はデータとニューラルな計算グラフに基礎を置いており、論理によるネットワークトレーニングを可能にする。
これらの設計によりLOGICSEGは、既存のセグメンテーションモデルに容易に統合できる汎用的でコンパクトなニューラル論理マシンとなる。
論文 参考訳(メタデータ) (2023-09-24T05:43:19Z) - Modeling Hierarchical Reasoning Chains by Linking Discourse Units and
Key Phrases for Reading Comprehension [80.99865844249106]
本稿では,論理的推論の基盤として,対話レベルと単語レベルの両方の文脈を扱う総合グラフネットワーク(HGN)を提案する。
具体的には、ノードレベルの関係とタイプレベルの関係は、推論過程におけるブリッジと解釈できるが、階層的な相互作用機構によってモデル化される。
論文 参考訳(メタデータ) (2023-06-21T07:34:27Z) - Neuro-Symbolic Inductive Logic Programming with Logical Neural Networks [65.23508422635862]
我々は最近提案された論理ニューラルネットワーク(LNN)を用いた学習規則を提案する。
他のものと比較して、LNNは古典的なブール論理と強く結びついている。
標準ベンチマークタスクの実験では、LNNルールが極めて解釈可能であることを確認した。
論文 参考訳(メタデータ) (2021-12-06T19:38:30Z) - Neural Logic Reasoning [47.622957656745356]
本稿では,ディープラーニングと論理推論の能力を統合するために,論理統合ニューラルネットワーク(LINN)を提案する。
LINNは、神経モジュールとしてAND、OR、NOTなどの基本的な論理操作を学び、推論のためにネットワークを通して命題論理推論を行う。
実験の結果、LINNはTop-Kレコメンデーションにおいて最先端のレコメンデーションモデルを大幅に上回っていることがわかった。
論文 参考訳(メタデータ) (2020-08-20T14:53:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。