DepthGait: Multi-Scale Cross-Level Feature Fusion of RGB-Derived Depth and Silhouette Sequences for Robust Gait Recognition
- URL: http://arxiv.org/abs/2508.03397v1
- Date: Tue, 05 Aug 2025 12:45:29 GMT
- Title: DepthGait: Multi-Scale Cross-Level Feature Fusion of RGB-Derived Depth and Silhouette Sequences for Robust Gait Recognition
- Authors: Xinzhu Li, Juepeng Zheng, Yikun Chen, Xudong Mao, Guanghui Yue, Wei Zhou, Chenlei Lv, Ruomei Wang, Fan Zhou, Baoquan Zhao,
- Abstract summary: In this paper, we introduce a novel framework, termed DepthGait, that incorporates RGB-derived depth maps and silhouettes for enhanced gait recognition.<n>Specifically, apart from the 2D silhouette representation of the human body, the proposed pipeline explicitly estimates depth maps from a given RGB image sequence.<n>A novel multi-scale and cross-level fusion scheme has also been developed to bridge the modality gap between depth maps and silhouettes.
- Score: 21.45735405341433
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Robust gait recognition requires highly discriminative representations, which are closely tied to input modalities. While binary silhouettes and skeletons have dominated recent literature, these 2D representations fall short of capturing sufficient cues that can be exploited to handle viewpoint variations, and capture finer and meaningful details of gait. In this paper, we introduce a novel framework, termed DepthGait, that incorporates RGB-derived depth maps and silhouettes for enhanced gait recognition. Specifically, apart from the 2D silhouette representation of the human body, the proposed pipeline explicitly estimates depth maps from a given RGB image sequence and uses them as a new modality to capture discriminative features inherent in human locomotion. In addition, a novel multi-scale and cross-level fusion scheme has also been developed to bridge the modality gap between depth maps and silhouettes. Extensive experiments on standard benchmarks demonstrate that the proposed DepthGait achieves state-of-the-art performance compared to peer methods and attains an impressive mean rank-1 accuracy on the challenging datasets.
Related papers
- DepthMatch: Semi-Supervised RGB-D Scene Parsing through Depth-Guided Regularization [43.974708665104565]
We introduce DepthMatch, a semi-supervised learning framework that is specifically designed for RGB-D scene parsing.<n>We propose complementary patch mix-up augmentation to explore the latent relationships between texture and spatial features in RGB-D image pairs.<n>We also design a lightweight spatial prior injector to replace traditional complex fusion modules, improving the efficiency of heterogeneous feature fusion.
arXiv Detail & Related papers (2025-05-26T14:26:31Z) - It Takes Two: Accurate Gait Recognition in the Wild via Cross-granularity Alignment [72.75844404617959]
This paper proposes a novel cross-granularity alignment gait recognition method, named XGait.
To achieve this goal, the XGait first contains two branches of backbone encoders to map the silhouette sequences and the parsing sequences into two latent spaces.
Comprehensive experiments on two large-scale gait datasets show XGait with the Rank-1 accuracy of 80.5% on Gait3D and 88.3% CCPG.
arXiv Detail & Related papers (2024-11-16T08:54:27Z) - DepthSplat: Connecting Gaussian Splatting and Depth [90.06180236292866]
We present DepthSplat to connect Gaussian splatting and depth estimation.<n>We show that Gaussian splatting can serve as an unsupervised pre-training objective for learning powerful depth models.<n>Our DepthSplat achieves state-of-the-art performance on ScanNet, RealEstate10K and DL3DV datasets.
arXiv Detail & Related papers (2024-10-17T17:59:58Z) - Towards Human-Level 3D Relative Pose Estimation: Generalizable, Training-Free, with Single Reference [62.99706119370521]
Humans can easily deduce the relative pose of an unseen object, without label/training, given only a single query-reference image pair.
We propose a novel 3D generalizable relative pose estimation method by elaborating (i) with a 2.5D shape from an RGB-D reference, (ii) with an off-the-shelf differentiable, and (iii) with semantic cues from a pretrained model like DINOv2.
arXiv Detail & Related papers (2024-06-26T16:01:10Z) - Confidence-Aware RGB-D Face Recognition via Virtual Depth Synthesis [48.59382455101753]
2D face recognition encounters challenges in unconstrained environments due to varying illumination, occlusion, and pose.
Recent studies focus on RGB-D face recognition to improve robustness by incorporating depth information.
In this work, we first construct a diverse depth dataset generated by 3D Morphable Models for depth model pre-training.
Then, we propose a domain-independent pre-training framework that utilizes readily available pre-trained RGB and depth models to separately perform face recognition without needing additional paired data for retraining.
arXiv Detail & Related papers (2024-03-11T09:12:24Z) - Symmetric Uncertainty-Aware Feature Transmission for Depth
Super-Resolution [52.582632746409665]
We propose a novel Symmetric Uncertainty-aware Feature Transmission (SUFT) for color-guided DSR.
Our method achieves superior performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-06-01T06:35:59Z) - RGB-D Grasp Detection via Depth Guided Learning with Cross-modal
Attention [14.790193023912973]
This paper proposes a novel learning based approach to RGB-D grasp detection, namely Depth Guided Cross-modal Attention Network (DGCAN)
To better leverage the geometry information recorded in the depth channel, a complete 6-dimensional rectangle representation is adopted with the grasp depth dedicatedly considered.
The prediction of the extra grasp depth substantially strengthens feature learning, thereby leading to more accurate results.
arXiv Detail & Related papers (2023-02-28T02:41:27Z) - Multi-Modal Human Authentication Using Silhouettes, Gait and RGB [59.46083527510924]
Whole-body-based human authentication is a promising approach for remote biometrics scenarios.
We propose Dual-Modal Ensemble (DME), which combines both RGB and silhouette data to achieve more robust performances for indoor and outdoor whole-body based recognition.
Within DME, we propose GaitPattern, which is inspired by the double helical gait pattern used in traditional gait analysis.
arXiv Detail & Related papers (2022-10-08T15:17:32Z) - Cross-modality Discrepant Interaction Network for RGB-D Salient Object
Detection [78.47767202232298]
We propose a novel Cross-modality Discrepant Interaction Network (CDINet) for RGB-D SOD.
Two components are designed to implement the effective cross-modality interaction.
Our network outperforms $15$ state-of-the-art methods both quantitatively and qualitatively.
arXiv Detail & Related papers (2021-08-04T11:24:42Z) - BridgeNet: A Joint Learning Network of Depth Map Super-Resolution and
Monocular Depth Estimation [60.34562823470874]
We propose a joint learning network of depth map super-resolution (DSR) and monocular depth estimation (MDE) without introducing additional supervision labels.
One is the high-frequency attention bridge (HABdg) designed for the feature encoding process, which learns the high-frequency information of the MDE task to guide the DSR task.
The other is the content guidance bridge (CGBdg) designed for the depth map reconstruction process, which provides the content guidance learned from DSR task for MDE task.
arXiv Detail & Related papers (2021-07-27T01:28:23Z) - Unpaired Single-Image Depth Synthesis with cycle-consistent Wasserstein
GANs [1.0499611180329802]
Real-time estimation of actual environment depth is an essential module for various autonomous system tasks.
In this study, latest advancements in the field of generative neural networks are leveraged to fully unsupervised single-image depth synthesis.
arXiv Detail & Related papers (2021-03-31T09:43:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.