Cropping outperforms dropout as an augmentation strategy for training self-supervised text embeddings
- URL: http://arxiv.org/abs/2508.03453v1
- Date: Tue, 05 Aug 2025 13:54:01 GMT
- Title: Cropping outperforms dropout as an augmentation strategy for training self-supervised text embeddings
- Authors: Rita González-Márquez, Philipp Berens, Dmitry Kobak,
- Abstract summary: We compare the two most well-known augmentation strategies for positive pair generation in contrastive learning of text embeddings.<n>We find that on out-of-domain data, the quality of resulting embeddings is below the supervised SOTA models, but for in-domain data, self-supervised fine-tuning produces high-quality text embeddings.
- Score: 10.915424073774744
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Text embeddings, i.e. vector representations of entire texts, play an important role in many NLP applications, such as retrieval-augmented generation, sentiment analysis, clustering, or visualizing collections of texts for data exploration. Currently, top-performing embedding models are derived from pre-trained language models via extensive supervised fine-tuning using curated text pairs. This contrasts with computer vision, where self-supervised training based on data augmentations has demonstrated remarkable success. Here we systematically compare the two most well-known augmentation strategies for positive pair generation in contrastive learning of text embeddings. We assess embedding quality on MTEB and additional in-domain evaluations and show that cropping augmentation strongly outperforms the dropout-based approach. We find that on out-of-domain data, the quality of resulting embeddings is below the supervised SOTA models, but for in-domain data, self-supervised fine-tuning produces high-quality text embeddings after very short fine-tuning, sometimes only marginally below the supervised SOTA. Finally, we show that representation quality increases towards the last transformer layers, which undergo the largest change during fine-tuning; and that fine-tuning only those last layers is sufficient to reach similar embedding quality.
Related papers
- Resource-Efficient Adaptation of Large Language Models for Text Embeddings via Prompt Engineering and Contrastive Fine-tuning [6.549601823162279]
Large Language Models (LLMs) have become a cornerstone in Natural Language Processing (NLP)<n>We explore several adaptation strategies for pre-trained, decoder-only LLMs.
arXiv Detail & Related papers (2025-07-30T14:49:30Z) - READ: Reinforcement-based Adversarial Learning for Text Classification with Limited Labeled Data [7.152603583363887]
Pre-trained transformer models such as BERT have shown massive gains across many text classification tasks.<n>This paper proposes a method that encapsulates reinforcement learning-based text generation and semi-supervised adversarial learning approaches.<n>Our method READ, Reinforcement-based Adversarial learning, utilizes an unlabeled dataset to generate diverse synthetic text through reinforcement learning.
arXiv Detail & Related papers (2025-01-14T11:39:55Z) - Can Graph Neural Networks Learn Language with Extremely Weak Text Supervision? [62.12375949429938]
We propose a multi-modal prompt learning paradigm to adapt pre-trained Graph Neural Networks to downstream tasks and data.<n>Our new paradigm embeds the graphs directly in the same space as the Large Language Models (LLMs) by learning both graph prompts and text prompts simultaneously.<n>We build the first CLIP-style zero-shot classification prototype that can generalize GNNs to unseen classes with extremely weak text supervision.
arXiv Detail & Related papers (2024-12-11T08:03:35Z) - Beyond Filtering: Adaptive Image-Text Quality Enhancement for MLLM Pretraining [31.176432567292093]
We propose the Adaptive Image-Text Quality Enhancer (AITQE), a model that dynamically assesses and enhances the quality of image-text pairs.
AITQE employs a text rewriting mechanism for low-quality pairs and incorporates a negative sample learning strategy to improve evaluative capabilities.
arXiv Detail & Related papers (2024-10-21T16:32:41Z) - A Pure Transformer Pretraining Framework on Text-attributed Graphs [50.833130854272774]
We introduce a feature-centric pretraining perspective by treating graph structure as a prior.
Our framework, Graph Sequence Pretraining with Transformer (GSPT), samples node contexts through random walks.
GSPT can be easily adapted to both node classification and link prediction, demonstrating promising empirical success on various datasets.
arXiv Detail & Related papers (2024-06-19T22:30:08Z) - Improving Text Generation on Images with Synthetic Captions [2.1175632266708733]
latent diffusion models such as SDXL and SD 1.5 have shown significant capability in generating realistic images.
We propose a low-cost approach by leveraging SDXL without any time-consuming training on large-scale datasets.
Our results demonstrate how our small scale fine-tuning approach can improve the accuracy of text generation in different scenarios.
arXiv Detail & Related papers (2024-06-01T17:27:34Z) - Improving Sampling Methods for Fine-tuning SentenceBERT in Text Streams [49.3179290313959]
This study explores the efficacy of seven text sampling methods designed to selectively fine-tune language models.
We precisely assess the impact of these methods on fine-tuning the SBERT model using four different loss functions.
Our findings indicate that Softmax loss and Batch All Triplets loss are particularly effective for text stream classification.
arXiv Detail & Related papers (2024-03-18T23:41:52Z) - Exploring Precision and Recall to assess the quality and diversity of LLMs [82.21278402856079]
We introduce a novel evaluation framework for Large Language Models (LLMs) such as textscLlama-2 and textscMistral.
This approach allows for a nuanced assessment of the quality and diversity of generated text without the need for aligned corpora.
arXiv Detail & Related papers (2024-02-16T13:53:26Z) - OT-Attack: Enhancing Adversarial Transferability of Vision-Language
Models via Optimal Transport Optimization [65.57380193070574]
Vision-language pre-training models are vulnerable to multi-modal adversarial examples.
Recent works have indicated that leveraging data augmentation and image-text modal interactions can enhance the transferability of adversarial examples.
We propose an Optimal Transport-based Adversarial Attack, dubbed OT-Attack.
arXiv Detail & Related papers (2023-12-07T16:16:50Z) - CoCo: Coherence-Enhanced Machine-Generated Text Detection Under Data
Limitation With Contrastive Learning [14.637303913878435]
We present a coherence-based contrastive learning model named CoCo to detect the possible MGT under low-resource scenario.
To exploit the linguistic feature, we encode coherence information in form of graph into text representation.
Experiment results on two public datasets and two self-constructed datasets prove our approach outperforms the state-of-art methods significantly.
arXiv Detail & Related papers (2022-12-20T15:26:19Z) - Generative Negative Text Replay for Continual Vision-Language
Pretraining [95.2784858069843]
Vision-language pre-training has attracted increasing attention recently.
Massive data are usually collected in a streaming fashion.
We propose a multi-modal knowledge distillation between images and texts to align the instance-wise prediction between old and new models.
arXiv Detail & Related papers (2022-10-31T13:42:21Z) - SDA: Improving Text Generation with Self Data Augmentation [88.24594090105899]
We propose to improve the standard maximum likelihood estimation (MLE) paradigm by incorporating a self-imitation-learning phase for automatic data augmentation.
Unlike most existing sentence-level augmentation strategies, our method is more general and could be easily adapted to any MLE-based training procedure.
arXiv Detail & Related papers (2021-01-02T01:15:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.