MAUP: Training-free Multi-center Adaptive Uncertainty-aware Prompting for Cross-domain Few-shot Medical Image Segmentation
- URL: http://arxiv.org/abs/2508.03511v1
- Date: Tue, 05 Aug 2025 14:37:42 GMT
- Title: MAUP: Training-free Multi-center Adaptive Uncertainty-aware Prompting for Cross-domain Few-shot Medical Image Segmentation
- Authors: Yazhou Zhu, Haofeng Zhang,
- Abstract summary: Cross-domain Few-shot Medical Image (CD-FSMIS) is a potential solution for segmenting medical images with limited annotation using knowledge from other domains.<n>We propose a training-free CD-FSMIS model that introduces the Multi-center Adaptive Uncertainty-aware Prompting (MAUP) strategy.
- Score: 18.498009757013644
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cross-domain Few-shot Medical Image Segmentation (CD-FSMIS) is a potential solution for segmenting medical images with limited annotation using knowledge from other domains. The significant performance of current CD-FSMIS models relies on the heavily training procedure over other source medical domains, which degrades the universality and ease of model deployment. With the development of large visual models of natural images, we propose a training-free CD-FSMIS model that introduces the Multi-center Adaptive Uncertainty-aware Prompting (MAUP) strategy for adapting the foundation model Segment Anything Model (SAM), which is trained with natural images, into the CD-FSMIS task. To be specific, MAUP consists of three key innovations: (1) K-means clustering based multi-center prompts generation for comprehensive spatial coverage, (2) uncertainty-aware prompts selection that focuses on the challenging regions, and (3) adaptive prompt optimization that can dynamically adjust according to the target region complexity. With the pre-trained DINOv2 feature encoder, MAUP achieves precise segmentation results across three medical datasets without any additional training compared with several conventional CD-FSMIS models and training-free FSMIS model. The source code is available at: https://github.com/YazhouZhu19/MAUP.
Related papers
- Multimodal Causal-Driven Representation Learning for Generalizable Medical Image Segmentation [56.52520416420957]
We propose Multimodal Causal-Driven Representation Learning (MCDRL) to tackle domain generalization in medical image segmentation.<n>MCDRL consistently outperforms competing methods, yielding superior segmentation accuracy and exhibiting robust generalizability.
arXiv Detail & Related papers (2025-08-07T03:41:41Z) - MedBridge: Bridging Foundation Vision-Language Models to Medical Image Diagnosis [10.082738539201804]
Recent vision-language foundation models deliver state-of-the-art results on natural image classification but falter on medical images due to domain shifts.<n>We introduce MedBridge, a lightweight multimodal adaptation framework that re-purposes pretrained VLMs for accurate medical image diagnosis.<n>MedBridge achieved over 6-15% improvement in AUC compared to state-of-the-art VLM adaptation methods in multi-label thoracic disease diagnosis.
arXiv Detail & Related papers (2025-05-27T19:37:51Z) - Large Language Models for Multimodal Deformable Image Registration [50.91473745610945]
We propose a novel coarse-to-fine MDIR framework,LLM-Morph, for aligning the deep features from different modal medical images.
Specifically, we first utilize a CNN encoder to extract deep visual features from cross-modal image pairs, then we use the first adapter to adjust these tokens, and use LoRA in pre-trained LLMs to fine-tune their weights.
Third, for the alignment of tokens, we utilize other four adapters to transform the LLM-encoded tokens into multi-scale visual features, generating multi-scale deformation fields and facilitating the coarse-to-fine MDIR task
arXiv Detail & Related papers (2024-08-20T09:58:30Z) - Retrieval-augmented Few-shot Medical Image Segmentation with Foundation Models [17.461510586128874]
We propose a novel method that adapts DINOv2 and Segment Anything Model 2 for retrieval-augmented few-shot medical image segmentation.<n>Our approach uses DINOv2's feature as query to retrieve similar samples from limited annotated data, which are then encoded as memories and stored in memory bank.
arXiv Detail & Related papers (2024-08-16T15:48:07Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
This paper proposes to directly modulate the generation process of diffusion models using fMRI signals.
By training with about 67,000 fMRI-image pairs from various individuals, our model enjoys superior fMRI-to-image decoding capacity.
arXiv Detail & Related papers (2024-03-27T02:42:52Z) - Partition-A-Medical-Image: Extracting Multiple Representative
Sub-regions for Few-shot Medical Image Segmentation [23.926487942901872]
Few-shot Medical Image (FSMIS) is a more promising solution for medical image segmentation tasks.
We present an approach to extract multiple representative sub-regions from a given support medical image.
We then introduce a novel Prototypical Representation Debiasing (PRD) module based on a two-way elimination mechanism.
arXiv Detail & Related papers (2023-09-20T09:31:57Z) - Training Data Protection with Compositional Diffusion Models [99.46239561159953]
Compartmentalized Diffusion Models (CDM) are a method to train different diffusion models (or prompts) on distinct data sources.
Individual models can be trained in isolation, at different times, and on different distributions and domains.
Each model only contains information about a subset of the data it was exposed to during training, enabling several forms of training data protection.
arXiv Detail & Related papers (2023-08-02T23:27:49Z) - Interpretable Small Training Set Image Segmentation Network Originated
from Multi-Grid Variational Model [5.283735137946097]
Deep learning (DL) methods have been proposed and widely used for image segmentation.
DL methods usually require a large amount of manually segmented data as training data and suffer from poor interpretability.
In this paper, we replace the hand-crafted regularity term in the MS model with a data adaptive generalized learnable regularity term.
arXiv Detail & Related papers (2023-06-25T02:34:34Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - ImUnity: a generalizable VAE-GAN solution for multicenter MR image
harmonization [0.0]
ImUnity is an original deep-learning model designed for efficient and flexible MR image harmonization.
A VAE-GAN network, coupled with a confusion module and an optional biological preservation module, uses multiple 2D-slices taken from different anatomical locations in each subject of the training database.
It eventually generates 'corrected' MR images that can be used for various multi-center population studies.
arXiv Detail & Related papers (2021-09-14T15:21:19Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.